Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Using the PhysX engine for physics-based virtual surgery with force feedback.

Identifieur interne : 001276 ( PubMed/Corpus ); précédent : 001275; suivant : 001277

Using the PhysX engine for physics-based virtual surgery with force feedback.

Auteurs : Anderson Maciel ; Tansel Halic ; Zhonghua Lu ; Luciana P. Nedel ; Suvranu De

Source :

RBID : pubmed:19449317

English descriptors

Abstract

The development of modern surgical simulators is highly challenging, as they must support complex simulation environments. The demand for higher realism in such simulators has driven researchers to adopt physics-based models, which are computationally very demanding. This poses a major problem, since real-time interactions must permit graphical updates of 30 Hz and a much higher rate of 1 kHz for force feedback (haptics). Recently several physics engines have been developed which offer multi-physics simulation capabilities, including rigid and deformable bodies, cloth and fluids. While such physics engines provide unique opportunities for the development of surgical simulators, their higher latencies, compared to what is necessary for real-time graphics and haptics, offer significant barriers to their use in interactive simulation environments.

DOI: 10.1002/rcs.266
PubMed: 19449317

Links to Exploration step

pubmed:19449317

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Using the PhysX engine for physics-based virtual surgery with force feedback.</title>
<author>
<name sortKey="Maciel, Anderson" sort="Maciel, Anderson" uniqKey="Maciel A" first="Anderson" last="Maciel">Anderson Maciel</name>
<affiliation>
<nlm:affiliation>Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. amaciel@inf.ufrgs.br</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Halic, Tansel" sort="Halic, Tansel" uniqKey="Halic T" first="Tansel" last="Halic">Tansel Halic</name>
</author>
<author>
<name sortKey="Lu, Zhonghua" sort="Lu, Zhonghua" uniqKey="Lu Z" first="Zhonghua" last="Lu">Zhonghua Lu</name>
</author>
<author>
<name sortKey="Nedel, Luciana P" sort="Nedel, Luciana P" uniqKey="Nedel L" first="Luciana P" last="Nedel">Luciana P. Nedel</name>
</author>
<author>
<name sortKey="De, Suvranu" sort="De, Suvranu" uniqKey="De S" first="Suvranu" last="De">Suvranu De</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="doi">10.1002/rcs.266</idno>
<idno type="RBID">pubmed:19449317</idno>
<idno type="pmid">19449317</idno>
<idno type="wicri:Area/PubMed/Corpus">001276</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Using the PhysX engine for physics-based virtual surgery with force feedback.</title>
<author>
<name sortKey="Maciel, Anderson" sort="Maciel, Anderson" uniqKey="Maciel A" first="Anderson" last="Maciel">Anderson Maciel</name>
<affiliation>
<nlm:affiliation>Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. amaciel@inf.ufrgs.br</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Halic, Tansel" sort="Halic, Tansel" uniqKey="Halic T" first="Tansel" last="Halic">Tansel Halic</name>
</author>
<author>
<name sortKey="Lu, Zhonghua" sort="Lu, Zhonghua" uniqKey="Lu Z" first="Zhonghua" last="Lu">Zhonghua Lu</name>
</author>
<author>
<name sortKey="Nedel, Luciana P" sort="Nedel, Luciana P" uniqKey="Nedel L" first="Luciana P" last="Nedel">Luciana P. Nedel</name>
</author>
<author>
<name sortKey="De, Suvranu" sort="De, Suvranu" uniqKey="De S" first="Suvranu" last="De">Suvranu De</name>
</author>
</analytic>
<series>
<title level="j">The international journal of medical robotics + computer assisted surgery : MRCAS</title>
<idno type="eISSN">1478-596X</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Biophysics (methods)</term>
<term>Computer Simulation</term>
<term>Feedback</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Robotics (methods)</term>
<term>Surgery, Computer-Assisted (methods)</term>
<term>Touch</term>
<term>User-Computer Interface</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biophysics</term>
<term>Robotics</term>
<term>Surgery, Computer-Assisted</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Computer Simulation</term>
<term>Feedback</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Touch</term>
<term>User-Computer Interface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The development of modern surgical simulators is highly challenging, as they must support complex simulation environments. The demand for higher realism in such simulators has driven researchers to adopt physics-based models, which are computationally very demanding. This poses a major problem, since real-time interactions must permit graphical updates of 30 Hz and a much higher rate of 1 kHz for force feedback (haptics). Recently several physics engines have been developed which offer multi-physics simulation capabilities, including rigid and deformable bodies, cloth and fluids. While such physics engines provide unique opportunities for the development of surgical simulators, their higher latencies, compared to what is necessary for real-time graphics and haptics, offer significant barriers to their use in interactive simulation environments.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">19449317</PMID>
<DateCreated>
<Year>2009</Year>
<Month>09</Month>
<Day>03</Day>
</DateCreated>
<DateCompleted>
<Year>2009</Year>
<Month>11</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>12</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1478-596X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2009</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>The international journal of medical robotics + computer assisted surgery : MRCAS</Title>
<ISOAbbreviation>Int J Med Robot</ISOAbbreviation>
</Journal>
<ArticleTitle>Using the PhysX engine for physics-based virtual surgery with force feedback.</ArticleTitle>
<Pagination>
<MedlinePgn>341-53</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/rcs.266</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The development of modern surgical simulators is highly challenging, as they must support complex simulation environments. The demand for higher realism in such simulators has driven researchers to adopt physics-based models, which are computationally very demanding. This poses a major problem, since real-time interactions must permit graphical updates of 30 Hz and a much higher rate of 1 kHz for force feedback (haptics). Recently several physics engines have been developed which offer multi-physics simulation capabilities, including rigid and deformable bodies, cloth and fluids. While such physics engines provide unique opportunities for the development of surgical simulators, their higher latencies, compared to what is necessary for real-time graphics and haptics, offer significant barriers to their use in interactive simulation environments.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">In this work, we propose solutions to this problem and demonstrate how a multimodal surgical simulation environment may be developed based on NVIDIA's PhysX physics library. Hence, models that are undergoing relatively low-frequency updates in PhysX can exist in an environment that demands much higher frequency updates for haptics. We use a collision handling layer to interface between the physical response provided by PhysX and the haptic rendering device to provide both real-time tissue response and force feedback.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Our simulator integrates a bimanual haptic interface for force feedback and per-pixel shaders for graphics realism in real time. To demonstrate the effectiveness of our approach, we present the simulation of the laparoscopic adjustable gastric banding (LAGB) procedure as a case study.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">To develop complex and realistic surgical trainers with realistic organ geometries and tissue properties demands stable physics-based deformation methods, which are not always compatible with the interaction level required for such trainers. We have shown that combining different modelling strategies for behaviour, collision and graphics is possible and desirable. Such multimodal environments enable suitable rates to simulate the major steps of the LAGB procedure.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Maciel</LastName>
<ForeName>Anderson</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. amaciel@inf.ufrgs.br</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Halic</LastName>
<ForeName>Tansel</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Zhonghua</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nedel</LastName>
<ForeName>Luciana P</ForeName>
<Initials>LP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>De</LastName>
<ForeName>Suvranu</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 EB005807</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB005807-01</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB005807-01</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Int J Med Robot</MedlineTA>
<NlmUniqueID>101250764</NlmUniqueID>
<ISSNLinking>1478-5951</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Med Inform Assoc. 1996 Mar-Apr;3(2):118-30</RefSource>
<PMID Version="1">8653448</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stud Health Technol Inform. 1998;50:385-91</RefSource>
<PMID Version="1">10180581</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stud Health Technol Inform. 1999;62:94-9</RefSource>
<PMID Version="1">10538407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Vis Comput Graph. 2007 May-Jun;13(3):518-29</RefSource>
<PMID Version="1">17356218</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Laparoendosc Adv Surg Tech A. 2010 Mar;20(2):153-7</RefSource>
<PMID Version="1">20201683</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stud Health Technol Inform. 2008;132:v-vi</RefSource>
<PMID Version="1">18399023</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Med Robot. 2008 Jun;4(2):131-8</RefSource>
<PMID Version="1">18348181</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Surg Endosc. 2009 Jun;23(6):1298-307</RefSource>
<PMID Version="1">18813984</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stud Health Technol Inform. 2008;132:266-71</RefSource>
<PMID Version="1">18391302</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001703">Biophysics</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005246">Feedback</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D008954">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012371">Robotics</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D025321">Surgery, Computer-Assisted</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014110">Touch</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014584">User-Computer Interface</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS166037</OtherID>
<OtherID Source="NLM">PMC2810833</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/rcs.266</ArticleId>
<ArticleId IdType="pubmed">19449317</ArticleId>
<ArticleId IdType="pmc">PMC2810833</ArticleId>
<ArticleId IdType="mid">NIHMS166037</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001276 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001276 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19449317
   |texte=   Using the PhysX engine for physics-based virtual surgery with force feedback.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:19449317" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024