Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Review of control strategies for robotic movement training after neurologic injury.

Identifieur interne : 001260 ( PubMed/Corpus ); précédent : 001259; suivant : 001261

Review of control strategies for robotic movement training after neurologic injury.

Auteurs : Laura Marchal-Crespo ; David J. Reinkensmeyer

Source :

RBID : pubmed:19531254

English descriptors

Abstract

There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury. This paper reviews control strategies for robotic therapy devices. Several categories of strategies have been proposed, including, assistive, challenge-based, haptic simulation, and coaching. The greatest amount of work has been done on developing assistive strategies, and thus the majority of this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance. Clinical evidence regarding the relative effectiveness of different types of robotic therapy controllers is limited, but there is initial evidence that some control strategies are more effective than others. It is also now apparent there may be mechanisms by which some robotic control approaches might actually decrease the recovery possible with comparable, non-robotic forms of training. In future research, there is a need for head-to-head comparison of control algorithms in randomized, controlled clinical trials, and for improved models of human motor recovery to provide a more rational framework for designing robotic therapy control strategies.

DOI: 10.1186/1743-0003-6-20
PubMed: 19531254

Links to Exploration step

pubmed:19531254

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Review of control strategies for robotic movement training after neurologic injury.</title>
<author>
<name sortKey="Marchal Crespo, Laura" sort="Marchal Crespo, Laura" uniqKey="Marchal Crespo L" first="Laura" last="Marchal-Crespo">Laura Marchal-Crespo</name>
<affiliation>
<nlm:affiliation>Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA. lmarchal@uci.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reinkensmeyer, David J" sort="Reinkensmeyer, David J" uniqKey="Reinkensmeyer D" first="David J" last="Reinkensmeyer">David J. Reinkensmeyer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="doi">10.1186/1743-0003-6-20</idno>
<idno type="RBID">pubmed:19531254</idno>
<idno type="pmid">19531254</idno>
<idno type="wicri:Area/PubMed/Corpus">001260</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Review of control strategies for robotic movement training after neurologic injury.</title>
<author>
<name sortKey="Marchal Crespo, Laura" sort="Marchal Crespo, Laura" uniqKey="Marchal Crespo L" first="Laura" last="Marchal-Crespo">Laura Marchal-Crespo</name>
<affiliation>
<nlm:affiliation>Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA. lmarchal@uci.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reinkensmeyer, David J" sort="Reinkensmeyer, David J" uniqKey="Reinkensmeyer D" first="David J" last="Reinkensmeyer">David J. Reinkensmeyer</name>
</author>
</analytic>
<series>
<title level="j">Journal of neuroengineering and rehabilitation</title>
<idno type="eISSN">1743-0003</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Electromyography (methods)</term>
<term>Humans</term>
<term>Musculoskeletal Manipulations (methods)</term>
<term>Robotics (methods)</term>
<term>Trauma, Nervous System (rehabilitation)</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Electromyography</term>
<term>Musculoskeletal Manipulations</term>
<term>Robotics</term>
</keywords>
<keywords scheme="MESH" qualifier="rehabilitation" xml:lang="en">
<term>Trauma, Nervous System</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury. This paper reviews control strategies for robotic therapy devices. Several categories of strategies have been proposed, including, assistive, challenge-based, haptic simulation, and coaching. The greatest amount of work has been done on developing assistive strategies, and thus the majority of this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance. Clinical evidence regarding the relative effectiveness of different types of robotic therapy controllers is limited, but there is initial evidence that some control strategies are more effective than others. It is also now apparent there may be mechanisms by which some robotic control approaches might actually decrease the recovery possible with comparable, non-robotic forms of training. In future research, there is a need for head-to-head comparison of control algorithms in randomized, controlled clinical trials, and for improved models of human motor recovery to provide a more rational framework for designing robotic therapy control strategies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">19531254</PMID>
<DateCreated>
<Year>2009</Year>
<Month>07</Month>
<Day>15</Day>
</DateCreated>
<DateCompleted>
<Year>2009</Year>
<Month>08</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>12</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1743-0003</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<PubDate>
<Year>2009</Year>
</PubDate>
</JournalIssue>
<Title>Journal of neuroengineering and rehabilitation</Title>
<ISOAbbreviation>J Neuroeng Rehabil</ISOAbbreviation>
</Journal>
<ArticleTitle>Review of control strategies for robotic movement training after neurologic injury.</ArticleTitle>
<Pagination>
<MedlinePgn>20</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1743-0003-6-20</ELocationID>
<Abstract>
<AbstractText>There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury. This paper reviews control strategies for robotic therapy devices. Several categories of strategies have been proposed, including, assistive, challenge-based, haptic simulation, and coaching. The greatest amount of work has been done on developing assistive strategies, and thus the majority of this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance. Clinical evidence regarding the relative effectiveness of different types of robotic therapy controllers is limited, but there is initial evidence that some control strategies are more effective than others. It is also now apparent there may be mechanisms by which some robotic control approaches might actually decrease the recovery possible with comparable, non-robotic forms of training. In future research, there is a need for head-to-head comparison of control algorithms in randomized, controlled clinical trials, and for improved models of human motor recovery to provide a more rational framework for designing robotic therapy control strategies.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Marchal-Crespo</LastName>
<ForeName>Laura</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA. lmarchal@uci.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reinkensmeyer</LastName>
<ForeName>David J</ForeName>
<Initials>DJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>M01RR00827</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>N01-HD-3-3352</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Neuroeng Rehabil</MedlineTA>
<NlmUniqueID>101232233</NlmUniqueID>
<ISSNLinking>1743-0003</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Phys Med Rehabil. 2007 Apr;86(4):255-61</RefSource>
<PMID Version="1">17413538</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroeng Rehabil. 2007;4:8</RefSource>
<PMID Version="1">17391527</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurorehabil Neural Repair. 2007 Jul-Aug;21(4):307-14</RefSource>
<PMID Version="1">17476001</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2007 Jul;130(Pt 7):1861-72</RefSource>
<PMID Version="1">17405765</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):327-35</RefSource>
<PMID Version="1">17894265</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):336-46</RefSource>
<PMID Version="1">17894266</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):356-66</RefSource>
<PMID Version="1">17894268</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):367-78</RefSource>
<PMID Version="1">17894269</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):379-86</RefSource>
<PMID Version="1">17894270</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stroke. 2008 Jun;39(6):1786-92</RefSource>
<PMID Version="1">18467648</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2008 Jun;16(3):264-9</RefSource>
<PMID Version="1">18586605</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2008 Jun;16(3):286-97</RefSource>
<PMID Version="1">18586608</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurorehabil Neural Repair. 2008 Jul-Aug;22(4):321-9</RefSource>
<PMID Version="1">18326888</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2008 Aug;100(2):879-87</RefSource>
<PMID Version="1">18509079</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2008 Aug;16(4):371-9</RefSource>
<PMID Version="1">18701384</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurorehabil Neural Repair. 2008 Sep-Oct;22(5):438-46</RefSource>
<PMID Version="1">18780879</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroeng Rehabil. 2008;5:21</RefSource>
<PMID Version="1">18771581</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet Neurol. 2008 Nov;7(11):1032-43</RefSource>
<PMID Version="1">18835541</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mot Behav. 2008 Nov;40(6):545-56</RefSource>
<PMID Version="1">18980907</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exerc Sport Sci Rev. 2009 Jan;37(1):43-51</RefSource>
<PMID Version="1">19098524</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurorehabil Neural Repair. 2009 Jan;23(1):5-13</RefSource>
<PMID Version="1">19109447</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stroke. 2009 Jan;40(1):169-74</RefSource>
<PMID Version="1">18988916</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):23-30</RefSource>
<PMID Version="1">19211320</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):38-45</RefSource>
<PMID Version="1">19211322</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurorehabil Neural Repair. 2009 Jun;23(5):505-14</RefSource>
<PMID Version="1">19237734</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Biol Eng Comput. 2007 Sep;45(9):887-900</RefSource>
<PMID Version="1">17674069</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2003 Apr;126(Pt 4):866-72</RefSource>
<PMID Version="1">12615644</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Phys Med Rehabil. 2003 Jun;84(6):915-20</RefSource>
<PMID Version="1">12808550</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Muscle Nerve. 2003 Sep;28(3):309-18</RefSource>
<PMID Version="1">12929190</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2004 Mar;12(1):24-31</RefSource>
<PMID Version="1">15068184</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mot Behav. 2004 Jun;36(2):212-24</RefSource>
<PMID Version="1">15130871</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stroke. 2004 Jun;35(6):1404-9</RefSource>
<PMID Version="1">15105515</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2004 Jun;12(2):186-94</RefSource>
<PMID Version="1">15218933</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Biomed Eng. 2004;6:497-525</RefSource>
<PMID Version="1">15255778</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Phys Med Rehabil. 2004 Sep;83(9):720-8</RefSource>
<PMID Version="1">15314537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stud Health Technol Inform. 2002;85:64-70</RefSource>
<PMID Version="1">15458061</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Restor Neurol Neurosci. 2004;22(3-5):349-58</RefSource>
<PMID Version="1">15502275</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Neurol. 1997 Apr;54(4):443-6</RefSource>
<PMID Version="1">9109746</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Rehabil Eng. 1998 Mar;6(1):75-87</RefSource>
<PMID Version="1">9535526</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NeuroRehabilitation. 2003;18(3):251-9</RefSource>
<PMID Version="1">14530590</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Inf Med. 2003;42(5):519-23</RefSource>
<PMID Version="1">14654886</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2003 Dec 9;61(11):1604-7</RefSource>
<PMID Version="1">14663051</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):387-400</RefSource>
<PMID Version="1">17894271</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):401-9</RefSource>
<PMID Version="1">17894272</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Phys Med Rehabil. 2007 Oct;88(10):1332-8</RefSource>
<PMID Version="1">17908578</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Conf Proc IEEE Eng Med Biol Soc. 2006;1:177-80</RefSource>
<PMID Version="1">17946798</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Med Child Neurol. 2007 Dec;49(12):900-6</RefSource>
<PMID Version="1">18039236</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurorehabil Neural Repair. 2008 Jan-Feb;22(1):50-63</RefSource>
<PMID Version="1">17626223</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comput Methods Programs Biomed. 2008 Feb;89(2):202-14</RefSource>
<PMID Version="1">17881080</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2007 Dec;15(4):560-9</RefSource>
<PMID Version="1">18198714</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2008 Feb;131(Pt 2):425-37</RefSource>
<PMID Version="1">18156154</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2008 Jan;55(1):322-34</RefSource>
<PMID Version="1">18232376</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurorehabil Neural Repair. 2008 Mar-Apr;22(2):111-21</RefSource>
<PMID Version="1">17876068</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Handchir Mikrochir Plast Chir. 2008 Feb;40(1):66-73</RefSource>
<PMID Version="1">18322901</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NeuroRehabilitation. 2008;23(1):81-7</RefSource>
<PMID Version="1">18356591</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Bull. 2008 Apr 15;75(6):804-13</RefSource>
<PMID Version="1">18394527</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Rehabil. 2008 May;22(5):395-405</RefSource>
<PMID Version="1">18441036</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Disabil Rehabil. 2008;30(2):81-7</RefSource>
<PMID Version="1">17852216</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Phys Med Rehabil. 2000 Jul-Aug;79(4):369-76; quiz 391-4</RefSource>
<PMID Version="1">10892623</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 2000 Nov-Dec;37(6):653-62</RefSource>
<PMID Version="1">11321001</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurorehabil Neural Repair. 2001;15(1):39-50</RefSource>
<PMID Version="1">11527278</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscientist. 2001 Oct;7(5):455-68</RefSource>
<PMID Version="1">11597104</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Phys Med Rehabil. 2002 Jul;83(7):952-9</RefSource>
<PMID Version="1">12098155</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2002 Jun;10(2):102-8</RefSource>
<PMID Version="1">12236447</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Rehabil. 2004 Feb;18(1):27-39</RefSource>
<PMID Version="1">14763717</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Med Rehabil Clin N Am. 2004 Feb;15(1):263-306</RefSource>
<PMID Version="1">15029909</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Rehabil. 1999 Jun;13(3):199-206</RefSource>
<PMID Version="1">10392646</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2004 Nov;159(2):197-205</RefSource>
<PMID Version="1">15549279</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Biol Eng Comput. 2005 Jan;43(1):2-10</RefSource>
<PMID Version="1">15742713</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2005 Mar;13(1):33-9</RefSource>
<PMID Version="1">15813404</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Phys Med Rehabil. 2005 Apr;86(4):672-80</RefSource>
<PMID Version="1">15827916</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2005 May;93(5):2460-73</RefSource>
<PMID Version="1">15590727</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2005 Jul 19;1050(1-2):180-9</RefSource>
<PMID Version="1">15979592</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Biomech. 2005 May;21(2):189-97</RefSource>
<PMID Version="1">16082019</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stroke. 2005 Sep;36(9):1960-6</RefSource>
<PMID Version="1">16109908</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):311-24</RefSource>
<PMID Version="1">16200755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):325-34</RefSource>
<PMID Version="1">16200756</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):349-58</RefSource>
<PMID Version="1">16200758</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):380-94</RefSource>
<PMID Version="1">16200761</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2006 Jan;168(3):368-83</RefSource>
<PMID Version="1">16249912</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 2005 Sep-Oct;42(5):683-92</RefSource>
<PMID Version="1">16586194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2006 May;95(5):3154-63</RefSource>
<PMID Version="1">16452259</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 2005 Nov-Dec;42(6):717-22</RefSource>
<PMID Version="1">16680609</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 2005 Nov-Dec;42(6):769-78</RefSource>
<PMID Version="1">16680614</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 2006 Mar-Apr;43(2):171-84</RefSource>
<PMID Version="1">16847784</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2006 Sep;14(3):311-21</RefSource>
<PMID Version="1">17009491</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2006 Sep;14(3):378-89</RefSource>
<PMID Version="1">17009498</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Ther. 2006 Oct;86(10):1378-86</RefSource>
<PMID Version="1">17012642</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Phys Ther. 2006 Sep;30(3):99-115</RefSource>
<PMID Version="1">17029654</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 Oct 11;26(41):10564-8</RefSource>
<PMID Version="1">17035542</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 2006 May-Jun;43(3):391-400</RefSource>
<PMID Version="1">17041824</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Ther. 2006 Nov;86(11):1466-78</RefSource>
<PMID Version="1">17079746</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 2006 Aug-Sep;43(5):619-30</RefSource>
<PMID Version="1">17123203</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 2006 Aug-Sep;43(5):631-42</RefSource>
<PMID Version="1">17123204</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 2006 Aug-Sep;43(5):643-56</RefSource>
<PMID Version="1">17123205</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 2006 Aug-Sep;43(5):671-8</RefSource>
<PMID Version="1">17123207</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Rehabil. 2007 Jan;21(1):17-27</RefSource>
<PMID Version="1">17213237</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stroke. 2007 Feb;38(2):349-54</RefSource>
<PMID Version="1">17204680</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Top Stroke Rehabil. 2007 Jan-Feb;14(1):1-12</RefSource>
<PMID Version="1">17311785</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroeng Rehabil. 2007;4:4</RefSource>
<PMID Version="1">17309791</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroeng Rehabil. 2007;4:5</RefSource>
<PMID Version="1">17309795</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 2007;40(6):1286-92</RefSource>
<PMID Version="1">16843472</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroeng Rehabil. 2007;4:7</RefSource>
<PMID Version="1">17381842</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004576">Electromyography</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D026201">Musculoskeletal Manipulations</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012371">Robotics</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D020196">Trauma, Nervous System</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000534">rehabilitation</QualifierName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>174</NumberOfReferences>
<OtherID Source="NLM">PMC2710333</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>10</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>6</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2009</Year>
<Month>6</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">1743-0003-6-20</ArticleId>
<ArticleId IdType="doi">10.1186/1743-0003-6-20</ArticleId>
<ArticleId IdType="pubmed">19531254</ArticleId>
<ArticleId IdType="pmc">PMC2710333</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001260 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001260 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19531254
   |texte=   Review of control strategies for robotic movement training after neurologic injury.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:19531254" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024