Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhancing realism of wet surfaces in temporal bone surgical simulation.

Identifieur interne : 001256 ( PubMed/Corpus ); précédent : 001255; suivant : 001257

Enhancing realism of wet surfaces in temporal bone surgical simulation.

Auteurs : Thomas Kerwin ; Han-Wei Shen ; Don Stredney

Source :

RBID : pubmed:19590102

English descriptors

Abstract

We present techniques to improve visual realism in an interactive surgical simulation application: a mastoidectomy simulator that offers a training environment for medical residents as a complement to using a cadaver. As well as displaying the mastoid bone through volume rendering, the simulation allows users to experience haptic feedback and appropriate sound cues while controlling a virtual bone drill and suction/irrigation device. The techniques employed to improve realism consist of a fluid simulator and a shading model. The former allows for deformable boundaries based on volumetric bone data, while the latter gives a wet look to the rendered bone to emulate more closely the appearance of the bone in a surgical environment. The fluid rendering includes bleeding effects, meniscus rendering, and refraction. We incorporate a planar computational fluid dynamics simulation into our three-dimensional rendering to effect realistic blood diffusion. Maintaining real-time performance while drilling away bone in the simulation is critical for engagement with the system.

DOI: 10.1109/TVCG.2009.31
PubMed: 19590102

Links to Exploration step

pubmed:19590102

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enhancing realism of wet surfaces in temporal bone surgical simulation.</title>
<author>
<name sortKey="Kerwin, Thomas" sort="Kerwin, Thomas" uniqKey="Kerwin T" first="Thomas" last="Kerwin">Thomas Kerwin</name>
<affiliation>
<nlm:affiliation>The Ohio State University and the Ohio Supercomputer Center, Columbus, OH 43212, USA. kerwin@cse.ohio-state.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shen, Han Wei" sort="Shen, Han Wei" uniqKey="Shen H" first="Han-Wei" last="Shen">Han-Wei Shen</name>
</author>
<author>
<name sortKey="Stredney, Don" sort="Stredney, Don" uniqKey="Stredney D" first="Don" last="Stredney">Don Stredney</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="????">
<PubDate>
<MedlineDate>2009 Sep-Oct</MedlineDate>
</PubDate>
</date>
<idno type="doi">10.1109/TVCG.2009.31</idno>
<idno type="RBID">pubmed:19590102</idno>
<idno type="pmid">19590102</idno>
<idno type="wicri:Area/PubMed/Corpus">001256</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Enhancing realism of wet surfaces in temporal bone surgical simulation.</title>
<author>
<name sortKey="Kerwin, Thomas" sort="Kerwin, Thomas" uniqKey="Kerwin T" first="Thomas" last="Kerwin">Thomas Kerwin</name>
<affiliation>
<nlm:affiliation>The Ohio State University and the Ohio Supercomputer Center, Columbus, OH 43212, USA. kerwin@cse.ohio-state.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shen, Han Wei" sort="Shen, Han Wei" uniqKey="Shen H" first="Han-Wei" last="Shen">Han-Wei Shen</name>
</author>
<author>
<name sortKey="Stredney, Don" sort="Stredney, Don" uniqKey="Stredney D" first="Don" last="Stredney">Don Stredney</name>
</author>
</analytic>
<series>
<title level="j">IEEE transactions on visualization and computer graphics</title>
<idno type="ISSN">1077-2626</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Computer Graphics</term>
<term>Computer Simulation</term>
<term>Computer-Assisted Instruction (methods)</term>
<term>General Surgery (education)</term>
<term>Hemorheology</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted (methods)</term>
<term>Mastoid (anatomy & histology)</term>
<term>Mastoid (surgery)</term>
<term>User-Computer Interface</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Mastoid</term>
</keywords>
<keywords scheme="MESH" qualifier="education" xml:lang="en">
<term>General Surgery</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computer-Assisted Instruction</term>
<term>Image Processing, Computer-Assisted</term>
</keywords>
<keywords scheme="MESH" qualifier="surgery" xml:lang="en">
<term>Mastoid</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Computer Graphics</term>
<term>Computer Simulation</term>
<term>Hemorheology</term>
<term>Humans</term>
<term>User-Computer Interface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present techniques to improve visual realism in an interactive surgical simulation application: a mastoidectomy simulator that offers a training environment for medical residents as a complement to using a cadaver. As well as displaying the mastoid bone through volume rendering, the simulation allows users to experience haptic feedback and appropriate sound cues while controlling a virtual bone drill and suction/irrigation device. The techniques employed to improve realism consist of a fluid simulator and a shading model. The former allows for deformable boundaries based on volumetric bone data, while the latter gives a wet look to the rendered bone to emulate more closely the appearance of the bone in a surgical environment. The fluid rendering includes bleeding effects, meniscus rendering, and refraction. We incorporate a planar computational fluid dynamics simulation into our three-dimensional rendering to effect realistic blood diffusion. Maintaining real-time performance while drilling away bone in the simulation is critical for engagement with the system.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">19590102</PMID>
<DateCreated>
<Year>2009</Year>
<Month>07</Month>
<Day>10</Day>
</DateCreated>
<DateCompleted>
<Year>2009</Year>
<Month>09</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>12</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1077-2626</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>15</Volume>
<Issue>5</Issue>
<PubDate>
<MedlineDate>2009 Sep-Oct</MedlineDate>
</PubDate>
</JournalIssue>
<Title>IEEE transactions on visualization and computer graphics</Title>
<ISOAbbreviation>IEEE Trans Vis Comput Graph</ISOAbbreviation>
</Journal>
<ArticleTitle>Enhancing realism of wet surfaces in temporal bone surgical simulation.</ArticleTitle>
<Pagination>
<MedlinePgn>747-58</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1109/TVCG.2009.31</ELocationID>
<Abstract>
<AbstractText>We present techniques to improve visual realism in an interactive surgical simulation application: a mastoidectomy simulator that offers a training environment for medical residents as a complement to using a cadaver. As well as displaying the mastoid bone through volume rendering, the simulation allows users to experience haptic feedback and appropriate sound cues while controlling a virtual bone drill and suction/irrigation device. The techniques employed to improve realism consist of a fluid simulator and a shading model. The former allows for deformable boundaries based on volumetric bone data, while the latter gives a wet look to the rendered bone to emulate more closely the appearance of the bone in a surgical environment. The fluid rendering includes bleeding effects, meniscus rendering, and refraction. We incorporate a planar computational fluid dynamics simulation into our three-dimensional rendering to effect realistic blood diffusion. Maintaining real-time performance while drilling away bone in the simulation is critical for engagement with the system.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kerwin</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>The Ohio State University and the Ohio Supercomputer Center, Columbus, OH 43212, USA. kerwin@cse.ohio-state.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Han-Wei</ForeName>
<Initials>HW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stredney</LastName>
<ForeName>Don</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>1 R01 DC06458-01A1</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DC006458</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DC006458-01A1</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>IEEE Trans Vis Comput Graph</MedlineTA>
<NlmUniqueID>9891704</NlmUniqueID>
<ISSNLinking>1077-2626</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Technol Health Care. 2004;12(1):25-31</RefSource>
<PMID Version="1">15096684</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stud Health Technol Inform. 1998;50:20-6</RefSource>
<PMID Version="1">10180540</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Image Anal. 2005 Jun;9(3):255-66</RefSource>
<PMID Version="1">15854845</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Med Biol. 2003 May 7;48(9):1205-21</RefSource>
<PMID Version="1">12765332</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Comput Graph Appl. 2006 Nov-Dec;26(6):48-57</RefSource>
<PMID Version="1">17120913</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Laryngoscope. 2007 Feb;117(2):258-63</RefSource>
<PMID Version="1">17204992</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Image Comput Comput Assist Interv. 2005;8(Pt 1):868-75</RefSource>
<PMID Version="1">16685928</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D003196">Computer Graphics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003194">Computer-Assisted Instruction</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013502">General Surgery</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000193">education</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018056">Hemorheology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007091">Image Processing, Computer-Assisted</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008416">Mastoid</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000033">anatomy & histology</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000601">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014584">User-Computer Interface</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS138845</OtherID>
<OtherID Source="NLM">PMC2748262</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1109/TVCG.2009.31</ArticleId>
<ArticleId IdType="pubmed">19590102</ArticleId>
<ArticleId IdType="pmc">PMC2748262</ArticleId>
<ArticleId IdType="mid">NIHMS138845</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001256 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001256 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19590102
   |texte=   Enhancing realism of wet surfaces in temporal bone surgical simulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:19590102" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024