Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neuroplasticity associated with tactile language communication in a deaf-blind subject.

Identifieur interne : 001143 ( PubMed/Corpus ); précédent : 001142; suivant : 001144

Neuroplasticity associated with tactile language communication in a deaf-blind subject.

Auteurs : Souzana Obretenova ; Mark A. Halko ; Ela B. Plow ; Alvaro Pascual-Leone ; Lotfi B. Merabet

Source :

RBID : pubmed:20130756

Abstract

A long-standing debate in cognitive neuroscience pertains to the innate nature of language development and the underlying factors that determine this faculty. We explored the neural correlates associated with language processing in a unique individual who is early blind, congenitally deaf, and possesses a high level of language function. Using functional magnetic resonance imaging (fMRI), we compared the neural networks associated with the tactile reading of words presented in Braille, Print on Palm (POP), and a haptic form of American Sign Language (haptic ASL or hASL). With all three modes of tactile communication, indentifying words was associated with robust activation within occipital cortical regions as well as posterior superior temporal and inferior frontal language areas (lateralized within the left hemisphere). In a normally sighted and hearing interpreter, identifying words through hASL was associated with left-lateralized activation of inferior frontal language areas however robust occipital cortex activation was not observed. Diffusion tensor imaging -based tractography revealed differences consistent with enhanced occipital-temporal connectivity in the deaf-blind subject. Our results demonstrate that in the case of early onset of both visual and auditory deprivation, tactile-based communication is associated with an extensive cortical network implicating occipital as well as posterior superior temporal and frontal associated language areas. The cortical areas activated in this deaf-blind subject are consistent with characteristic cortical regions previously implicated with language. Finally, the resilience of language function within the context of early and combined visual and auditory deprivation may be related to enhanced connectivity between relevant cortical areas.

DOI: 10.3389/neuro.09.060.2009
PubMed: 20130756

Links to Exploration step

pubmed:20130756

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Neuroplasticity associated with tactile language communication in a deaf-blind subject.</title>
<author>
<name sortKey="Obretenova, Souzana" sort="Obretenova, Souzana" uniqKey="Obretenova S" first="Souzana" last="Obretenova">Souzana Obretenova</name>
<affiliation>
<nlm:affiliation>The Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Halko, Mark A" sort="Halko, Mark A" uniqKey="Halko M" first="Mark A" last="Halko">Mark A. Halko</name>
</author>
<author>
<name sortKey="Plow, Ela B" sort="Plow, Ela B" uniqKey="Plow E" first="Ela B" last="Plow">Ela B. Plow</name>
</author>
<author>
<name sortKey="Pascual Leone, Alvaro" sort="Pascual Leone, Alvaro" uniqKey="Pascual Leone A" first="Alvaro" last="Pascual-Leone">Alvaro Pascual-Leone</name>
</author>
<author>
<name sortKey="Merabet, Lotfi B" sort="Merabet, Lotfi B" uniqKey="Merabet L" first="Lotfi B" last="Merabet">Lotfi B. Merabet</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="doi">10.3389/neuro.09.060.2009</idno>
<idno type="RBID">pubmed:20130756</idno>
<idno type="pmid">20130756</idno>
<idno type="wicri:Area/PubMed/Corpus">001143</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Neuroplasticity associated with tactile language communication in a deaf-blind subject.</title>
<author>
<name sortKey="Obretenova, Souzana" sort="Obretenova, Souzana" uniqKey="Obretenova S" first="Souzana" last="Obretenova">Souzana Obretenova</name>
<affiliation>
<nlm:affiliation>The Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Halko, Mark A" sort="Halko, Mark A" uniqKey="Halko M" first="Mark A" last="Halko">Mark A. Halko</name>
</author>
<author>
<name sortKey="Plow, Ela B" sort="Plow, Ela B" uniqKey="Plow E" first="Ela B" last="Plow">Ela B. Plow</name>
</author>
<author>
<name sortKey="Pascual Leone, Alvaro" sort="Pascual Leone, Alvaro" uniqKey="Pascual Leone A" first="Alvaro" last="Pascual-Leone">Alvaro Pascual-Leone</name>
</author>
<author>
<name sortKey="Merabet, Lotfi B" sort="Merabet, Lotfi B" uniqKey="Merabet L" first="Lotfi B" last="Merabet">Lotfi B. Merabet</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in human neuroscience</title>
<idno type="eISSN">1662-5161</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A long-standing debate in cognitive neuroscience pertains to the innate nature of language development and the underlying factors that determine this faculty. We explored the neural correlates associated with language processing in a unique individual who is early blind, congenitally deaf, and possesses a high level of language function. Using functional magnetic resonance imaging (fMRI), we compared the neural networks associated with the tactile reading of words presented in Braille, Print on Palm (POP), and a haptic form of American Sign Language (haptic ASL or hASL). With all three modes of tactile communication, indentifying words was associated with robust activation within occipital cortical regions as well as posterior superior temporal and inferior frontal language areas (lateralized within the left hemisphere). In a normally sighted and hearing interpreter, identifying words through hASL was associated with left-lateralized activation of inferior frontal language areas however robust occipital cortex activation was not observed. Diffusion tensor imaging -based tractography revealed differences consistent with enhanced occipital-temporal connectivity in the deaf-blind subject. Our results demonstrate that in the case of early onset of both visual and auditory deprivation, tactile-based communication is associated with an extensive cortical network implicating occipital as well as posterior superior temporal and frontal associated language areas. The cortical areas activated in this deaf-blind subject are consistent with characteristic cortical regions previously implicated with language. Finally, the resilience of language function within the context of early and combined visual and auditory deprivation may be related to enhanced connectivity between relevant cortical areas.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">20130756</PMID>
<DateCreated>
<Year>2010</Year>
<Month>02</Month>
<Day>04</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>07</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>08</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1662-5161</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>3</Volume>
<PubDate>
<Year>2010</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in human neuroscience</Title>
<ISOAbbreviation>Front Hum Neurosci</ISOAbbreviation>
</Journal>
<ArticleTitle>Neuroplasticity associated with tactile language communication in a deaf-blind subject.</ArticleTitle>
<Pagination>
<MedlinePgn>60</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/neuro.09.060.2009</ELocationID>
<Abstract>
<AbstractText>A long-standing debate in cognitive neuroscience pertains to the innate nature of language development and the underlying factors that determine this faculty. We explored the neural correlates associated with language processing in a unique individual who is early blind, congenitally deaf, and possesses a high level of language function. Using functional magnetic resonance imaging (fMRI), we compared the neural networks associated with the tactile reading of words presented in Braille, Print on Palm (POP), and a haptic form of American Sign Language (haptic ASL or hASL). With all three modes of tactile communication, indentifying words was associated with robust activation within occipital cortical regions as well as posterior superior temporal and inferior frontal language areas (lateralized within the left hemisphere). In a normally sighted and hearing interpreter, identifying words through hASL was associated with left-lateralized activation of inferior frontal language areas however robust occipital cortex activation was not observed. Diffusion tensor imaging -based tractography revealed differences consistent with enhanced occipital-temporal connectivity in the deaf-blind subject. Our results demonstrate that in the case of early onset of both visual and auditory deprivation, tactile-based communication is associated with an extensive cortical network implicating occipital as well as posterior superior temporal and frontal associated language areas. The cortical areas activated in this deaf-blind subject are consistent with characteristic cortical regions previously implicated with language. Finally, the resilience of language function within the context of early and combined visual and auditory deprivation may be related to enhanced connectivity between relevant cortical areas.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Obretenova</LastName>
<ForeName>Souzana</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>The Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Halko</LastName>
<ForeName>Mark A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Plow</LastName>
<ForeName>Ela B</ForeName>
<Initials>EB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pascual-Leone</LastName>
<ForeName>Alvaro</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Merabet</LastName>
<ForeName>Lotfi B</ForeName>
<Initials>LB</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>01</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Hum Neurosci</MedlineTA>
<NlmUniqueID>101477954</NlmUniqueID>
<ISSNLinking>1662-5161</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Lang. 2002 Aug;82(2):167-78</RefSource>
<PMID Version="1">12096874</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2002 Oct 1;14(7):1064-75</RefSource>
<PMID Version="1">12419129</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Cogn. 2002 Jun;49(1):170-81</RefSource>
<PMID Version="1">12027401</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2002 Jun;3(6):443-52</RefSource>
<PMID Version="1">12042879</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Cogn. 2002 Jun;49(1):152-69</RefSource>
<PMID Version="1">12027400</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2002;40(9):1562-9</RefSource>
<PMID Version="1">11985837</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Scand J Psychol. 2002 Feb;43(1):73-9</RefSource>
<PMID Version="1">11885762</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2002 Jan;87(1):589-607</RefSource>
<PMID Version="1">11784773</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2001 Jun;30(3):657-63</RefSource>
<PMID Version="1">11430800</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Scand Audiol. 2001;30(2):67-77</RefSource>
<PMID Version="1">11409790</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2001 Mar;4(3):324-30</RefSource>
<PMID Version="1">11224551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Anat. 2000 Oct;197 Pt 3:335-59</RefSource>
<PMID Version="1">11117622</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 2000 Apr;10(2):232-7</RefSource>
<PMID Version="1">10753803</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2000 Feb 7;11(2):237-40</RefSource>
<PMID Version="1">10674462</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2007 Jun;10(6):687-9</RefSource>
<PMID Version="1">17515898</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 May 16;27(20):5326-37</RefSource>
<PMID Version="1">17507555</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2007 May 15;36(1):202-8</RefSource>
<PMID Version="1">17407824</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2007 May 7;18(7):645-8</RefSource>
<PMID Version="1">17426591</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2007 Feb;17(2):457-65</RefSource>
<PMID Version="1">16581983</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2007 Jan 1;34(1):144-55</RefSource>
<PMID Version="1">17070705</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2006 Sep 18;17(13):1381-4</RefSource>
<PMID Version="1">16932143</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2006 Jul 1;31(3):968-80</RefSource>
<PMID Version="1">16530430</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2006 Apr 20;50(2):191-204</RefSource>
<PMID Version="1">16630832</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2005 Dec;22(11):2886-902</RefSource>
<PMID Version="1">16324124</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscientist. 2005 Dec;11(6):577-82</RefSource>
<PMID Version="1">16282598</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2008 Nov;12(11):432-40</RefSource>
<PMID Version="1">18805728</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2008;8(10):13.1-19</RefSource>
<PMID Version="1">19146355</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2005 Oct;17(10):1621-37</RefSource>
<PMID Version="1">16269101</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 2005 Aug;15(4):454-8</RefSource>
<PMID Version="1">16019202</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 2005;28:377-401</RefSource>
<PMID Version="1">16022601</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cognition. 2005 Mar;95(2):201-36</RefSource>
<PMID Version="1">15694646</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2005 Jan;6(1):71-7</RefSource>
<PMID Version="1">15611728</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1999 Apr 2;284(5411):167-70</RefSource>
<PMID Version="1">10102821</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 1999 Feb;9(2):195-207</RefSource>
<PMID Version="1">9931269</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 1999 Feb;9(2):179-94</RefSource>
<PMID Version="1">9931268</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1999 Jan 14;397(6715):116</RefSource>
<PMID Version="1">9923672</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 1998 Aug;21(2):275-8</RefSource>
<PMID Version="1">9728908</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1998 Jul;121 ( Pt 7):1213-29</RefSource>
<PMID Version="1">9679774</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):922-9</RefSource>
<PMID Version="1">9448260</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1997 Sep 11;389(6647):180-3</RefSource>
<PMID Version="1">9296495</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 1996 Nov;8(11):2236-46</RefSource>
<PMID Version="1">8950088</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Br J Psychiatry. 1996 Aug;169(2):148-59</RefSource>
<PMID Version="1">8871790</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1996 Jul 1;16(13):4207-21</RefSource>
<PMID Version="1">8753882</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1996 Apr 11;380(6574):526-8</RefSource>
<PMID Version="1">8606771</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 1995 Jan;18(1):36-43</RefSource>
<PMID Version="1">7535489</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 1994 May-Jun;4(3):300-13</RefSource>
<PMID Version="1">8075534</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2004 Nov;7(11):1266-70</RefSource>
<PMID Version="1">15467719</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2004;23 Suppl 1:S69-84</RefSource>
<PMID Version="1">15501102</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol Paris. 2004 Jan-Jun;98(1-3):221-33</RefSource>
<PMID Version="1">15477034</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Cogn Brain Res. 2004 Jul;20(2):226-41</RefSource>
<PMID Version="1">15183394</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2004 Feb 9;15(2):287-91</RefSource>
<PMID Version="1">15076754</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5658-63</RefSource>
<PMID Version="1">15064396</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2004 Apr 8;359(1-2):49-52</RefSource>
<PMID Version="1">15050709</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2004 Jan;14(1):11-22</RefSource>
<PMID Version="1">14654453</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2003 Nov;50(5):1077-88</RefSource>
<PMID Version="1">14587019</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Lang. 2003 Aug;86(2):272-86</RefSource>
<PMID Version="1">12921768</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2003 Jul;6(7):750-7</RefSource>
<PMID Version="1">12808459</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2003 Jul;126(Pt 7):1620-7</RefSource>
<PMID Version="1">12805112</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2003 Apr 1;15(3):372-93</RefSource>
<PMID Version="1">12729490</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Lang. 2003 Jan;84(1):120-33</RefSource>
<PMID Version="1">12537955</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2002 Nov 22;298(5598):1569-79</RefSource>
<PMID Version="1">12446899</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 2002;138:177-88</RefSource>
<PMID Version="1">12432770</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2002 Jul;125(Pt 7):1583-93</RefSource>
<PMID Version="1">12077007</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC2805429</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">blindness</Keyword>
<Keyword MajorTopicYN="N">deafness</Keyword>
<Keyword MajorTopicYN="N">diffusion tensor imaging</Keyword>
<Keyword MajorTopicYN="N">fMRI</Keyword>
<Keyword MajorTopicYN="N">neuroplasticity</Keyword>
<Keyword MajorTopicYN="N">tactile language</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>8</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>11</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2010</Year>
<Month>1</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>2</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>2</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.3389/neuro.09.060.2009</ArticleId>
<ArticleId IdType="pubmed">20130756</ArticleId>
<ArticleId IdType="pmc">PMC2805429</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001143 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001143 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20130756
   |texte=   Neuroplasticity associated with tactile language communication in a deaf-blind subject.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20130756" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024