Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Precision and accuracy of the subjective haptic vertical in the roll plane.

Identifieur interne : 001062 ( PubMed/Corpus ); précédent : 001061; suivant : 001063

Precision and accuracy of the subjective haptic vertical in the roll plane.

Auteurs : Jeanine R. Schuler ; Christopher J. Bockisch ; Dominik Straumann ; Alexander A. Tarnutzer

Source :

RBID : pubmed:20630097

English descriptors

Abstract

When roll-tilted, the subjective visual vertical (SVV) deviates up to 40 degrees from earth-vertical and trial-to-trial variability increases with head roll. Imperfections in the central processing of visual information were postulated to explain these roll-angle dependent errors. For experimental conditions devoid of visual input, e.g. adjustments of body posture or of an object along vertical in darkness, significantly smaller errors were noted. Whereas the accuracy of verticality adjustments seems to depend strongly on the paradigm, we hypothesize that the precision, i.e. the inverse of trial-to-trial variability, is less influenced by the experimental setup and mainly reflects properties of the otoliths. Here we measured the subjective haptic vertical (SHV) and compared findings with previously reported SVV data. Twelve healthy right-handed human subjects (handedness assessed based on subjects' verbal report) adjusted a rod with the right hand along perceived earth-vertical during static head roll-tilts (0-360 degrees , steps of 20 degrees ).

DOI: 10.1186/1471-2202-11-83
PubMed: 20630097

Links to Exploration step

pubmed:20630097

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Precision and accuracy of the subjective haptic vertical in the roll plane.</title>
<author>
<name sortKey="Schuler, Jeanine R" sort="Schuler, Jeanine R" uniqKey="Schuler J" first="Jeanine R" last="Schuler">Jeanine R. Schuler</name>
<affiliation>
<nlm:affiliation>Department of Neurology, Zurich University Hospital, Zurich, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bockisch, Christopher J" sort="Bockisch, Christopher J" uniqKey="Bockisch C" first="Christopher J" last="Bockisch">Christopher J. Bockisch</name>
</author>
<author>
<name sortKey="Straumann, Dominik" sort="Straumann, Dominik" uniqKey="Straumann D" first="Dominik" last="Straumann">Dominik Straumann</name>
</author>
<author>
<name sortKey="Tarnutzer, Alexander A" sort="Tarnutzer, Alexander A" uniqKey="Tarnutzer A" first="Alexander A" last="Tarnutzer">Alexander A. Tarnutzer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="doi">10.1186/1471-2202-11-83</idno>
<idno type="RBID">pubmed:20630097</idno>
<idno type="pmid">20630097</idno>
<idno type="wicri:Area/PubMed/Corpus">001062</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Precision and accuracy of the subjective haptic vertical in the roll plane.</title>
<author>
<name sortKey="Schuler, Jeanine R" sort="Schuler, Jeanine R" uniqKey="Schuler J" first="Jeanine R" last="Schuler">Jeanine R. Schuler</name>
<affiliation>
<nlm:affiliation>Department of Neurology, Zurich University Hospital, Zurich, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bockisch, Christopher J" sort="Bockisch, Christopher J" uniqKey="Bockisch C" first="Christopher J" last="Bockisch">Christopher J. Bockisch</name>
</author>
<author>
<name sortKey="Straumann, Dominik" sort="Straumann, Dominik" uniqKey="Straumann D" first="Dominik" last="Straumann">Dominik Straumann</name>
</author>
<author>
<name sortKey="Tarnutzer, Alexander A" sort="Tarnutzer, Alexander A" uniqKey="Tarnutzer A" first="Alexander A" last="Tarnutzer">Alexander A. Tarnutzer</name>
</author>
</analytic>
<series>
<title level="j">BMC neuroscience</title>
<idno type="eISSN">1471-2202</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Analysis of Variance</term>
<term>Cues</term>
<term>Female</term>
<term>Head Movements (physiology)</term>
<term>Humans</term>
<term>Male</term>
<term>Orientation (physiology)</term>
<term>Posture (physiology)</term>
<term>Rotation</term>
<term>Space Perception (physiology)</term>
<term>Visual Perception (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Head Movements</term>
<term>Orientation</term>
<term>Posture</term>
<term>Space Perception</term>
<term>Visual Perception</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Analysis of Variance</term>
<term>Cues</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Rotation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">When roll-tilted, the subjective visual vertical (SVV) deviates up to 40 degrees from earth-vertical and trial-to-trial variability increases with head roll. Imperfections in the central processing of visual information were postulated to explain these roll-angle dependent errors. For experimental conditions devoid of visual input, e.g. adjustments of body posture or of an object along vertical in darkness, significantly smaller errors were noted. Whereas the accuracy of verticality adjustments seems to depend strongly on the paradigm, we hypothesize that the precision, i.e. the inverse of trial-to-trial variability, is less influenced by the experimental setup and mainly reflects properties of the otoliths. Here we measured the subjective haptic vertical (SHV) and compared findings with previously reported SVV data. Twelve healthy right-handed human subjects (handedness assessed based on subjects' verbal report) adjusted a rod with the right hand along perceived earth-vertical during static head roll-tilts (0-360 degrees , steps of 20 degrees ).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">20630097</PMID>
<DateCreated>
<Year>2010</Year>
<Month>08</Month>
<Day>02</Day>
</DateCreated>
<DateCompleted>
<Year>2010</Year>
<Month>09</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>12</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2202</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<PubDate>
<Year>2010</Year>
</PubDate>
</JournalIssue>
<Title>BMC neuroscience</Title>
<ISOAbbreviation>BMC Neurosci</ISOAbbreviation>
</Journal>
<ArticleTitle>Precision and accuracy of the subjective haptic vertical in the roll plane.</ArticleTitle>
<Pagination>
<MedlinePgn>83</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2202-11-83</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">When roll-tilted, the subjective visual vertical (SVV) deviates up to 40 degrees from earth-vertical and trial-to-trial variability increases with head roll. Imperfections in the central processing of visual information were postulated to explain these roll-angle dependent errors. For experimental conditions devoid of visual input, e.g. adjustments of body posture or of an object along vertical in darkness, significantly smaller errors were noted. Whereas the accuracy of verticality adjustments seems to depend strongly on the paradigm, we hypothesize that the precision, i.e. the inverse of trial-to-trial variability, is less influenced by the experimental setup and mainly reflects properties of the otoliths. Here we measured the subjective haptic vertical (SHV) and compared findings with previously reported SVV data. Twelve healthy right-handed human subjects (handedness assessed based on subjects' verbal report) adjusted a rod with the right hand along perceived earth-vertical during static head roll-tilts (0-360 degrees , steps of 20 degrees ).</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">SHV adjustments showed a tendency for clockwise rod rotations to deviate counter-clockwise and for counter-clockwise rod rotations to deviate clockwise, indicating hysteresis. Clockwise rod rotations resulted in counter-clockwise shifts of perceived earth-vertical up to -11.7 degrees and an average counter-clockwise SHV shift over all roll angles of -3.3 degrees (+/- 11.0 degrees ; +/- 1 StdDev). Counter-clockwise rod rotations yielded peak SHV deviations in clockwise direction of 8.9 degrees and an average clockwise SHV shift over all roll angles of 1.8 degrees (+/- 11.1 degrees ). Trial-to-trial variability was minimal in upright position, increased with increasing roll (peaking around 120-140 degrees ) and decreased to intermediate values in upside-down orientation. Compared to SVV, SHV variability near upright and upside-down was non-significantly (p > 0.05) larger; both showed an m-shaped pattern of variability as a function of roll position.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The reduction of adjustment errors by eliminating visual input supports the notion that deviations between perceived and actual earth-vertical in roll-tilted positions arise from central processing of visual information. The shared roll-tilt dependent modulation of trial-to-trial variability for both SVV and SHV, on the other hand, indicates that the perception of earth-verticality is dominated by the same sensory signal, i.e. the otolith signal, independent of whether the line/rod setting is under visual or tactile control.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schuler</LastName>
<ForeName>Jeanine R</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurology, Zurich University Hospital, Zurich, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bockisch</LastName>
<ForeName>Christopher J</ForeName>
<Initials>CJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Straumann</LastName>
<ForeName>Dominik</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tarnutzer</LastName>
<ForeName>Alexander A</ForeName>
<Initials>AA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>07</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Neurosci</MedlineTA>
<NlmUniqueID>100966986</NlmUniqueID>
<ISSNLinking>1471-2202</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Res. 1978 Mar 3;40(1):65-76</RefSource>
<PMID Version="1">635075</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1976 Sep;39(5):970-84</RefSource>
<PMID Version="1">824412</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Otolaryngol. 1979 May-Jun;87(5-6):490-8</RefSource>
<PMID Version="1">313656</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Naturwissenschaften. 1983 Jun;70(6):272-81</RefSource>
<PMID Version="1">6877388</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1985;59(1):185-96</RefSource>
<PMID Version="1">4018196</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Cybern. 1985;52(5):315-31</RefSource>
<PMID Version="1">4052499</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Cogn. 1987 Apr;6(2):175-83</RefSource>
<PMID Version="1">3593557</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 1992;15:167-91</RefSource>
<PMID Version="1">1575441</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 1992 Aug 17;142(2):183-6</RefSource>
<PMID Version="1">1454213</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Bull. 1996;40(5-6):393-7; discussion 397-8</RefSource>
<PMID Version="1">8886364</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1996 Oct;119 ( Pt 5):1523-34</RefSource>
<PMID Version="1">8931577</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur Arch Otorhinolaryngol. 1997;254 Suppl 1:S61-3</RefSource>
<PMID Version="1">9065630</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 1997 Apr;37(8):1071-8</RefSource>
<PMID Version="1">9196725</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 1997 Sep 19;233(2-3):151-3</RefSource>
<PMID Version="1">9350855</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1997 Nov;78(5):2413-26</RefSource>
<PMID Version="1">9356393</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 1998 Jun;38(13):1989-99</RefSource>
<PMID Version="1">9797945</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 1999 May 28;871:173-80</RefSource>
<PMID Version="1">10372070</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1999 Jun;126(3):417-30</RefSource>
<PMID Version="1">10382626</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Rev. 1962 Nov;69:477-91</RefSource>
<PMID Version="1">13947730</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Psychol. 1964 Sep;77:451-6</RefSource>
<PMID Version="1">14198668</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Otolaryngol. 1962 Jun;54:479-501</RefSource>
<PMID Version="1">14473991</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 2004 Dec;27(12):712-9</RefSource>
<PMID Version="1">15541511</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2005 Jun;93(6):3356-69</RefSource>
<PMID Version="1">15673551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2005 Oct;94(4):2353-78</RefSource>
<PMID Version="1">15888522</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 2005;149:65-81</RefSource>
<PMID Version="1">16226577</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2006 Apr;95(4):2222-32</RefSource>
<PMID Version="1">16338995</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2006 Aug;173(3):364-73</RefSource>
<PMID Version="1">16628401</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Cybern. 2007 Apr;96(4):389-404</RefSource>
<PMID Version="1">17146661</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2007 May;179(2):263-90</RefSource>
<PMID Version="1">17136526</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2008 Feb;99(2):915-30</RefSource>
<PMID Version="1">18094098</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hear Res. 2008 May;239(1-2):12-9</RefSource>
<PMID Version="1">18316166</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2008 May;99(5):2264-80</RefSource>
<PMID Version="1">18337369</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2009;9(2):9.1-15</RefSource>
<PMID Version="1">19271919</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2009 Sep;102(3):1657-71</RefSource>
<PMID Version="1">19571203</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 2009 Aug;19(4):452-8</RefSource>
<PMID Version="1">19616425</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 2009;38(7):988-1001</RefSource>
<PMID Version="1">19764301</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2010 Feb;103(2):934-41</RefSource>
<PMID Version="1">20018837</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2010 May;48(6):1616-27</RefSource>
<PMID Version="1">20138897</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2003 Aug;90(2):622-30</RefSource>
<PMID Version="1">12649316</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 1999 Nov;37(12):1387-405</RefSource>
<PMID Version="1">10606013</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2000;38(1):93-110</RefSource>
<PMID Version="1">10617294</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2000 Jul;84(1):11-27</RefSource>
<PMID Version="1">10899179</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2000 Oct;28(1):287-98</RefSource>
<PMID Version="1">11087001</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Otolaryngol. 2000 Sep;120(6):735-8</RefSource>
<PMID Version="1">11099150</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 2001 Jul;41(16):2127-37</RefSource>
<PMID Version="1">11403796</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 2001;41(25-26):3229-42</RefSource>
<PMID Version="1">11718769</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2002 Mar 4;13(3):327-31</RefSource>
<PMID Version="1">11930132</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2003 Nov 11;61(9):1260-2</RefSource>
<PMID Version="1">14610132</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 2004 Feb;44(4):397-406</RefSource>
<PMID Version="1">14659966</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2004 Jan 15;427(6971):244-7</RefSource>
<PMID Version="1">14724638</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2004 May;91(5):2205-14</RefSource>
<PMID Version="1">14668294</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Psychol (Amst). 2004 Sep;117(1):13-28</RefSource>
<PMID Version="1">15288227</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Otolaryngol. 1970 Jan-Feb;69(1):25-31</RefSource>
<PMID Version="1">5446607</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1970;93(2):313-28</RefSource>
<PMID Version="1">5310320</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Psychol. 1968 Dec;81(4):488-96</RefSource>
<PMID Version="1">5760030</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Otol Rhinol Laryngol. 1972 Jun;81(3):339-51</RefSource>
<PMID Version="1">4113136</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Otolaryngol. 1974 Nov-Dec;78(5-6):391-8</RefSource>
<PMID Version="1">4451089</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1979 Apr 2;35(2):229-48</RefSource>
<PMID Version="1">108122</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000704">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003463">Cues</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019416">Head Movements</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009949">Orientation</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011187">Posture</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012399">Rotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013028">Space Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014796">Visual Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC2912915</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>2</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>7</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2010</Year>
<Month>7</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>9</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">1471-2202-11-83</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2202-11-83</ArticleId>
<ArticleId IdType="pubmed">20630097</ArticleId>
<ArticleId IdType="pmc">PMC2912915</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001062 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001062 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20630097
   |texte=   Precision and accuracy of the subjective haptic vertical in the roll plane.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20630097" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024