Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

GPU-based efficient realistic techniques for bleeding and smoke generation in surgical simulators.

Identifieur interne : 001027 ( PubMed/Corpus ); précédent : 001026; suivant : 001028

GPU-based efficient realistic techniques for bleeding and smoke generation in surgical simulators.

Auteurs : Tansel Halic ; Ganesh Sankaranarayanan ; Suvranu De

Source :

RBID : pubmed:20878651

English descriptors

Abstract

In actual surgery, smoke and bleeding due to cauterization processes provide important visual cues to the surgeon, which have been proposed as factors in surgical skill assessment. While several virtual reality (VR)-based surgical simulators have incorporated the effects of bleeding and smoke generation, they are not realistic due to the requirement of real-time performance. To be interactive, visual update must be performed at at least 30 Hz and haptic (touch) information must be refreshed at 1 kHz. Simulation of smoke and bleeding is, therefore, either ignored or simulated using highly simplified techniques, since other computationally intensive processes compete for the available Central Processing Unit (CPU) resources.

DOI: 10.1002/rcs.353
PubMed: 20878651

Links to Exploration step

pubmed:20878651

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">GPU-based efficient realistic techniques for bleeding and smoke generation in surgical simulators.</title>
<author>
<name sortKey="Halic, Tansel" sort="Halic, Tansel" uniqKey="Halic T" first="Tansel" last="Halic">Tansel Halic</name>
<affiliation>
<nlm:affiliation>Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sankaranarayanan, Ganesh" sort="Sankaranarayanan, Ganesh" uniqKey="Sankaranarayanan G" first="Ganesh" last="Sankaranarayanan">Ganesh Sankaranarayanan</name>
</author>
<author>
<name sortKey="De, Suvranu" sort="De, Suvranu" uniqKey="De S" first="Suvranu" last="De">Suvranu De</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="doi">10.1002/rcs.353</idno>
<idno type="RBID">pubmed:20878651</idno>
<idno type="pmid">20878651</idno>
<idno type="wicri:Area/PubMed/Corpus">001027</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">GPU-based efficient realistic techniques for bleeding and smoke generation in surgical simulators.</title>
<author>
<name sortKey="Halic, Tansel" sort="Halic, Tansel" uniqKey="Halic T" first="Tansel" last="Halic">Tansel Halic</name>
<affiliation>
<nlm:affiliation>Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sankaranarayanan, Ganesh" sort="Sankaranarayanan, Ganesh" uniqKey="Sankaranarayanan G" first="Ganesh" last="Sankaranarayanan">Ganesh Sankaranarayanan</name>
</author>
<author>
<name sortKey="De, Suvranu" sort="De, Suvranu" uniqKey="De S" first="Suvranu" last="De">Suvranu De</name>
</author>
</analytic>
<series>
<title level="j">The international journal of medical robotics + computer assisted surgery : MRCAS</title>
<idno type="eISSN">1478-596X</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer Graphics</term>
<term>Computer Simulation</term>
<term>Female</term>
<term>General Surgery (education)</term>
<term>Hemorrhage</term>
<term>Humans</term>
<term>Laparoscopy (methods)</term>
<term>Male</term>
<term>Stomach (surgery)</term>
<term>Surgery, Computer-Assisted (methods)</term>
<term>User-Computer Interface</term>
<term>Video-Assisted Surgery</term>
</keywords>
<keywords scheme="MESH" qualifier="education" xml:lang="en">
<term>General Surgery</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Laparoscopy</term>
<term>Surgery, Computer-Assisted</term>
</keywords>
<keywords scheme="MESH" qualifier="surgery" xml:lang="en">
<term>Stomach</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Graphics</term>
<term>Computer Simulation</term>
<term>Female</term>
<term>Hemorrhage</term>
<term>Humans</term>
<term>Male</term>
<term>User-Computer Interface</term>
<term>Video-Assisted Surgery</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In actual surgery, smoke and bleeding due to cauterization processes provide important visual cues to the surgeon, which have been proposed as factors in surgical skill assessment. While several virtual reality (VR)-based surgical simulators have incorporated the effects of bleeding and smoke generation, they are not realistic due to the requirement of real-time performance. To be interactive, visual update must be performed at at least 30 Hz and haptic (touch) information must be refreshed at 1 kHz. Simulation of smoke and bleeding is, therefore, either ignored or simulated using highly simplified techniques, since other computationally intensive processes compete for the available Central Processing Unit (CPU) resources.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">20878651</PMID>
<DateCreated>
<Year>2010</Year>
<Month>11</Month>
<Day>25</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>03</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1478-596X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2010</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>The international journal of medical robotics + computer assisted surgery : MRCAS</Title>
<ISOAbbreviation>Int J Med Robot</ISOAbbreviation>
</Journal>
<ArticleTitle>GPU-based efficient realistic techniques for bleeding and smoke generation in surgical simulators.</ArticleTitle>
<Pagination>
<MedlinePgn>431-43</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/rcs.353</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">In actual surgery, smoke and bleeding due to cauterization processes provide important visual cues to the surgeon, which have been proposed as factors in surgical skill assessment. While several virtual reality (VR)-based surgical simulators have incorporated the effects of bleeding and smoke generation, they are not realistic due to the requirement of real-time performance. To be interactive, visual update must be performed at at least 30 Hz and haptic (touch) information must be refreshed at 1 kHz. Simulation of smoke and bleeding is, therefore, either ignored or simulated using highly simplified techniques, since other computationally intensive processes compete for the available Central Processing Unit (CPU) resources.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">In this study we developed a novel low-cost method to generate realistic bleeding and smoke in VR-based surgical simulators, which outsources the computations to the graphical processing unit (GPU), thus freeing up the CPU for other time-critical tasks. This method is independent of the complexity of the organ models in the virtual environment. User studies were performed using 20 subjects to determine the visual quality of the simulations compared to real surgical videos.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The smoke and bleeding simulation were implemented as part of a laparoscopic adjustable gastric banding (LAGB) simulator. For the bleeding simulation, the original implementation using the shader did not incur noticeable overhead. However, for smoke generation, an input/output (I/O) bottleneck was observed and two different methods were developed to overcome this limitation. Based on our benchmark results, a buffered approach performed better than a pipelined approach and could support up to 15 video streams in real time. Human subject studies showed that the visual realism of the simulations were as good as in real surgery (median rating of 4 on a 5-point Likert scale).</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Based on the performance results and subject study, both bleeding and smoke simulations were concluded to be efficient, highly realistic and well suited to VR-based surgical simulators.</AbstractText>
<CopyrightInformation>Copyright © 2010 John Wiley & Sons, Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Halic</LastName>
<ForeName>Tansel</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sankaranarayanan</LastName>
<ForeName>Ganesh</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>De</LastName>
<ForeName>Suvranu</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 EB005807</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB005807-04</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB010037</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01EB005807</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>09</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Int J Med Robot</MedlineTA>
<NlmUniqueID>101250764</NlmUniqueID>
<ISSNLinking>1478-5951</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Laparoendosc Adv Surg Tech A. 2003 Aug;13(4):257-63</RefSource>
<PMID Version="1">14561254</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stud Health Technol Inform. 1998;50:110-6</RefSource>
<PMID Version="1">10180525</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Endourol. 2002 Sep;16(7):451-5</RefSource>
<PMID Version="1">12396436</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Surg Endosc. 2011 Apr;25(4):1012-8</RefSource>
<PMID Version="1">20734069</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Surg Endosc. 2010 Oct;24(10):2492-501</RefSource>
<PMID Version="1">20339874</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Med Robot. 2009 Sep;5(3):341-53</RefSource>
<PMID Version="1">19449317</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Vis Comput Graph. 2009 Sep-Oct;15(5):747-58</RefSource>
<PMID Version="1">19590102</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol. 1948 Aug;1(2):93-122</RefSource>
<PMID Version="1">18887578</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stud Health Technol Inform. 2008;132:313-5</RefSource>
<PMID Version="1">18391311</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stud Health Technol Inform. 2008;132:257-9</RefSource>
<PMID Version="1">18391299</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stud Health Technol Inform. 2007;125:94-9</RefSource>
<PMID Version="1">17377242</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stud Health Technol Inform. 2007;125:13-8</RefSource>
<PMID Version="1">17377224</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Surg. 2006 Jul;244(1):139-47</RefSource>
<PMID Version="1">16794399</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Image Anal. 2005 Jun;9(3):255-66</RefSource>
<PMID Version="1">15854845</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stud Health Technol Inform. 2005;111:43-9</RefSource>
<PMID Version="1">15718696</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stud Health Technol Inform. 1999;62:38-44</RefSource>
<PMID Version="1">10538392</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stud Health Technol Inform. 2002;85:296-303</RefSource>
<PMID Version="1">15458105</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stud Health Technol Inform. 2003;94:1-3</RefSource>
<PMID Version="1">15455853</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomed Instrum Technol. 2004 May-Jun;38(3):225-8</RefSource>
<PMID Version="1">15174366</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Technol Health Care. 2004;12(1):25-31</RefSource>
<PMID Version="1">15096684</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Surg Endosc. 2003 Jun;17(6):979-87</RefSource>
<PMID Version="1">12640543</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D003196">Computer Graphics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013502">General Surgery</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000193">education</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006470">Hemorrhage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010535">Laparoscopy</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013270">Stomach</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000601">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D025321">Surgery, Computer-Assisted</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014584">User-Computer Interface</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D020535">Video-Assisted Surgery</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS226883</OtherID>
<OtherID Source="NLM">PMC2992102</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>7</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2010</Year>
<Month>9</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>3</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/rcs.353</ArticleId>
<ArticleId IdType="pubmed">20878651</ArticleId>
<ArticleId IdType="pmc">PMC2992102</ArticleId>
<ArticleId IdType="mid">NIHMS226883</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001027 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001027 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20878651
   |texte=   GPU-based efficient realistic techniques for bleeding and smoke generation in surgical simulators.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20878651" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024