Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Topology modification for surgical simulation using precomputed finite element models based on linear elasticity.

Identifieur interne : 001021 ( PubMed/Corpus ); précédent : 001020; suivant : 001022

Topology modification for surgical simulation using precomputed finite element models based on linear elasticity.

Auteurs : Bryan Lee ; Dan C. Popescu ; Sébastien Ourselin

Source :

RBID : pubmed:20920518

English descriptors

Abstract

Surgical simulators provide another tool for training and practising surgical procedures, usually restricted to the use of cadavers. Our surgical simulator utilises Finite Element (FE) models based on linear elasticity. It is driven by displacements, as opposed to forces, allowing for realistic simulation of both deformation and haptic response at real-time rates. To achieve demanding computational requirements, the stiffness matrix K, which encompasses the geometrical and physical properties of the object, is precomputed, along with K⁻¹. Common to many surgical procedures is the requirement of cutting tissue. Introducing topology modifications, such as cutting, into these precomputed schemes does however come as a challenge, as the precomputed data needs to be modified, to reflect the new topology. In particular, recomputing K⁻¹ is too costly to be performed during the simulation. Our topology modification method is based upon updating K⁻¹ rather than entirely recomputing the matrix. By integrating condensation, we improve efficiency to allow for interaction with larger models. We can further enhance this by redistributing computational load to improve the system's real-time response. We exemplify our techniques with results from our surgical simulation system.

DOI: 10.1016/j.pbiomolbio.2010.09.011
PubMed: 20920518

Links to Exploration step

pubmed:20920518

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Topology modification for surgical simulation using precomputed finite element models based on linear elasticity.</title>
<author>
<name sortKey="Lee, Bryan" sort="Lee, Bryan" uniqKey="Lee B" first="Bryan" last="Lee">Bryan Lee</name>
<affiliation>
<nlm:affiliation>School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW 2006, Australia. blee0308@uni.sydney.edu.au</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Popescu, Dan C" sort="Popescu, Dan C" uniqKey="Popescu D" first="Dan C" last="Popescu">Dan C. Popescu</name>
</author>
<author>
<name sortKey="Ourselin, Sebastien" sort="Ourselin, Sebastien" uniqKey="Ourselin S" first="Sébastien" last="Ourselin">Sébastien Ourselin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="doi">10.1016/j.pbiomolbio.2010.09.011</idno>
<idno type="RBID">pubmed:20920518</idno>
<idno type="pmid">20920518</idno>
<idno type="wicri:Area/PubMed/Corpus">001021</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Topology modification for surgical simulation using precomputed finite element models based on linear elasticity.</title>
<author>
<name sortKey="Lee, Bryan" sort="Lee, Bryan" uniqKey="Lee B" first="Bryan" last="Lee">Bryan Lee</name>
<affiliation>
<nlm:affiliation>School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW 2006, Australia. blee0308@uni.sydney.edu.au</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Popescu, Dan C" sort="Popescu, Dan C" uniqKey="Popescu D" first="Dan C" last="Popescu">Dan C. Popescu</name>
</author>
<author>
<name sortKey="Ourselin, Sebastien" sort="Ourselin, Sebastien" uniqKey="Ourselin S" first="Sébastien" last="Ourselin">Sébastien Ourselin</name>
</author>
</analytic>
<series>
<title level="j">Progress in biophysics and molecular biology</title>
<idno type="eISSN">1873-1732</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Computer Simulation</term>
<term>Elasticity</term>
<term>Finite Element Analysis</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Stress, Mechanical</term>
<term>Surgical Procedures, Operative</term>
<term>User-Computer Interface</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Computer Simulation</term>
<term>Elasticity</term>
<term>Finite Element Analysis</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Stress, Mechanical</term>
<term>Surgical Procedures, Operative</term>
<term>User-Computer Interface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Surgical simulators provide another tool for training and practising surgical procedures, usually restricted to the use of cadavers. Our surgical simulator utilises Finite Element (FE) models based on linear elasticity. It is driven by displacements, as opposed to forces, allowing for realistic simulation of both deformation and haptic response at real-time rates. To achieve demanding computational requirements, the stiffness matrix K, which encompasses the geometrical and physical properties of the object, is precomputed, along with K⁻¹. Common to many surgical procedures is the requirement of cutting tissue. Introducing topology modifications, such as cutting, into these precomputed schemes does however come as a challenge, as the precomputed data needs to be modified, to reflect the new topology. In particular, recomputing K⁻¹ is too costly to be performed during the simulation. Our topology modification method is based upon updating K⁻¹ rather than entirely recomputing the matrix. By integrating condensation, we improve efficiency to allow for interaction with larger models. We can further enhance this by redistributing computational load to improve the system's real-time response. We exemplify our techniques with results from our surgical simulation system.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">20920518</PMID>
<DateCreated>
<Year>2010</Year>
<Month>12</Month>
<Day>06</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>03</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-1732</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>103</Volume>
<Issue>2-3</Issue>
<PubDate>
<Year>2010</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Progress in biophysics and molecular biology</Title>
<ISOAbbreviation>Prog. Biophys. Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Topology modification for surgical simulation using precomputed finite element models based on linear elasticity.</ArticleTitle>
<Pagination>
<MedlinePgn>236-51</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.pbiomolbio.2010.09.011</ELocationID>
<Abstract>
<AbstractText>Surgical simulators provide another tool for training and practising surgical procedures, usually restricted to the use of cadavers. Our surgical simulator utilises Finite Element (FE) models based on linear elasticity. It is driven by displacements, as opposed to forces, allowing for realistic simulation of both deformation and haptic response at real-time rates. To achieve demanding computational requirements, the stiffness matrix K, which encompasses the geometrical and physical properties of the object, is precomputed, along with K⁻¹. Common to many surgical procedures is the requirement of cutting tissue. Introducing topology modifications, such as cutting, into these precomputed schemes does however come as a challenge, as the precomputed data needs to be modified, to reflect the new topology. In particular, recomputing K⁻¹ is too costly to be performed during the simulation. Our topology modification method is based upon updating K⁻¹ rather than entirely recomputing the matrix. By integrating condensation, we improve efficiency to allow for interaction with larger models. We can further enhance this by redistributing computational load to improve the system's real-time response. We exemplify our techniques with results from our surgical simulation system.</AbstractText>
<CopyrightInformation>Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Bryan</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW 2006, Australia. blee0308@uni.sydney.edu.au</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Popescu</LastName>
<ForeName>Dan C</ForeName>
<Initials>DC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ourselin</LastName>
<ForeName>Sébastien</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>10</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Prog Biophys Mol Biol</MedlineTA>
<NlmUniqueID>0401233</NlmUniqueID>
<ISSNLinking>0079-6107</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001696">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004548">Elasticity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D020342">Finite Element Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D008954">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013314">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D013514">Surgical Procedures, Operative</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014584">User-Computer Interface</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>2</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2010</Year>
<Month>8</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>9</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2010</Year>
<Month>10</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">S0079-6107(10)00079-9</ArticleId>
<ArticleId IdType="doi">10.1016/j.pbiomolbio.2010.09.011</ArticleId>
<ArticleId IdType="pubmed">20920518</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001021 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001021 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20920518
   |texte=   Topology modification for surgical simulation using precomputed finite element models based on linear elasticity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20920518" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024