Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery.

Identifieur interne : 000E93 ( PubMed/Corpus ); précédent : 000E92; suivant : 000E94

Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery.

Auteurs : M. Gomez-Rodriguez ; J. Peters ; J. Hill ; B. Schölkopf ; A. Gharabaghi ; M. Grosse-Wentrup

Source :

RBID : pubmed:21474878

English descriptors

Abstract

The combination of brain-computer interfaces (BCIs) with robot-assisted physical therapy constitutes a promising approach to neurorehabilitation of patients with severe hemiparetic syndromes caused by cerebrovascular brain damage (e.g. stroke) and other neurological conditions. In such a scenario, a key aspect is how to reestablish the disrupted sensorimotor feedback loop. However, to date it is an open question how artificially closing the sensorimotor feedback loop influences the decoding performance of a BCI. In this paper, we answer this issue by studying six healthy subjects and two stroke patients. We present empirical evidence that haptic feedback, provided by a seven degrees of freedom robotic arm, facilitates online decoding of arm movement intention. The results support the feasibility of future rehabilitative treatments based on the combination of robot-assisted physical therapy with BCIs.

DOI: 10.1088/1741-2560/8/3/036005
PubMed: 21474878

Links to Exploration step

pubmed:21474878

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery.</title>
<author>
<name sortKey="Gomez Rodriguez, M" sort="Gomez Rodriguez, M" uniqKey="Gomez Rodriguez M" first="M" last="Gomez-Rodriguez">M. Gomez-Rodriguez</name>
<affiliation>
<nlm:affiliation>MPI for Biological Cybernetics, Tübingen, Germany. manuelgr@stanford.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peters, J" sort="Peters, J" uniqKey="Peters J" first="J" last="Peters">J. Peters</name>
</author>
<author>
<name sortKey="Hill, J" sort="Hill, J" uniqKey="Hill J" first="J" last="Hill">J. Hill</name>
</author>
<author>
<name sortKey="Scholkopf, B" sort="Scholkopf, B" uniqKey="Scholkopf B" first="B" last="Schölkopf">B. Schölkopf</name>
</author>
<author>
<name sortKey="Gharabaghi, A" sort="Gharabaghi, A" uniqKey="Gharabaghi A" first="A" last="Gharabaghi">A. Gharabaghi</name>
</author>
<author>
<name sortKey="Grosse Wentrup, M" sort="Grosse Wentrup, M" uniqKey="Grosse Wentrup M" first="M" last="Grosse-Wentrup">M. Grosse-Wentrup</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="doi">10.1088/1741-2560/8/3/036005</idno>
<idno type="RBID">pubmed:21474878</idno>
<idno type="pmid">21474878</idno>
<idno type="wicri:Area/PubMed/Corpus">000E93</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery.</title>
<author>
<name sortKey="Gomez Rodriguez, M" sort="Gomez Rodriguez, M" uniqKey="Gomez Rodriguez M" first="M" last="Gomez-Rodriguez">M. Gomez-Rodriguez</name>
<affiliation>
<nlm:affiliation>MPI for Biological Cybernetics, Tübingen, Germany. manuelgr@stanford.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peters, J" sort="Peters, J" uniqKey="Peters J" first="J" last="Peters">J. Peters</name>
</author>
<author>
<name sortKey="Hill, J" sort="Hill, J" uniqKey="Hill J" first="J" last="Hill">J. Hill</name>
</author>
<author>
<name sortKey="Scholkopf, B" sort="Scholkopf, B" uniqKey="Scholkopf B" first="B" last="Schölkopf">B. Schölkopf</name>
</author>
<author>
<name sortKey="Gharabaghi, A" sort="Gharabaghi, A" uniqKey="Gharabaghi A" first="A" last="Gharabaghi">A. Gharabaghi</name>
</author>
<author>
<name sortKey="Grosse Wentrup, M" sort="Grosse Wentrup, M" uniqKey="Grosse Wentrup M" first="M" last="Grosse-Wentrup">M. Grosse-Wentrup</name>
</author>
</analytic>
<series>
<title level="j">Journal of neural engineering</title>
<idno type="eISSN">1741-2552</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Brain (physiology)</term>
<term>Evoked Potentials, Motor (physiology)</term>
<term>Evoked Potentials, Somatosensory (physiology)</term>
<term>Feedback, Physiological (physiology)</term>
<term>Female</term>
<term>Humans</term>
<term>Imagination (physiology)</term>
<term>Male</term>
<term>Movement (physiology)</term>
<term>Robotics (methods)</term>
<term>Touch (physiology)</term>
<term>User-Computer Interface</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Robotics</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Brain</term>
<term>Evoked Potentials, Motor</term>
<term>Evoked Potentials, Somatosensory</term>
<term>Feedback, Physiological</term>
<term>Imagination</term>
<term>Movement</term>
<term>Touch</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>User-Computer Interface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The combination of brain-computer interfaces (BCIs) with robot-assisted physical therapy constitutes a promising approach to neurorehabilitation of patients with severe hemiparetic syndromes caused by cerebrovascular brain damage (e.g. stroke) and other neurological conditions. In such a scenario, a key aspect is how to reestablish the disrupted sensorimotor feedback loop. However, to date it is an open question how artificially closing the sensorimotor feedback loop influences the decoding performance of a BCI. In this paper, we answer this issue by studying six healthy subjects and two stroke patients. We present empirical evidence that haptic feedback, provided by a seven degrees of freedom robotic arm, facilitates online decoding of arm movement intention. The results support the feasibility of future rehabilitative treatments based on the combination of robot-assisted physical therapy with BCIs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">21474878</PMID>
<DateCreated>
<Year>2011</Year>
<Month>05</Month>
<Day>30</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>11</Month>
<Day>30</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1741-2552</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of neural engineering</Title>
<ISOAbbreviation>J Neural Eng</ISOAbbreviation>
</Journal>
<ArticleTitle>Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery.</ArticleTitle>
<Pagination>
<MedlinePgn>036005</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1088/1741-2560/8/3/036005</ELocationID>
<Abstract>
<AbstractText>The combination of brain-computer interfaces (BCIs) with robot-assisted physical therapy constitutes a promising approach to neurorehabilitation of patients with severe hemiparetic syndromes caused by cerebrovascular brain damage (e.g. stroke) and other neurological conditions. In such a scenario, a key aspect is how to reestablish the disrupted sensorimotor feedback loop. However, to date it is an open question how artificially closing the sensorimotor feedback loop influences the decoding performance of a BCI. In this paper, we answer this issue by studying six healthy subjects and two stroke patients. We present empirical evidence that haptic feedback, provided by a seven degrees of freedom robotic arm, facilitates online decoding of arm movement intention. The results support the feasibility of future rehabilitative treatments based on the combination of robot-assisted physical therapy with BCIs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gomez-Rodriguez</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>MPI for Biological Cybernetics, Tübingen, Germany. manuelgr@stanford.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peters</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hill</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schölkopf</LastName>
<ForeName>B</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gharabaghi</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grosse-Wentrup</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>04</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Neural Eng</MedlineTA>
<NlmUniqueID>101217933</NlmUniqueID>
<ISSNLinking>1741-2552</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001921">Brain</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019054">Evoked Potentials, Motor</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005073">Evoked Potentials, Somatosensory</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D025461">Feedback, Physiological</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007092">Imagination</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009068">Movement</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012371">Robotics</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014110">Touch</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014584">User-Computer Interface</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2011</Year>
<Month>4</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">S1741-2560(11)65262-2</ArticleId>
<ArticleId IdType="doi">10.1088/1741-2560/8/3/036005</ArticleId>
<ArticleId IdType="pubmed">21474878</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E93 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000E93 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21474878
   |texte=   Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21474878" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024