Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quasi-linear viscoelastic modeling of arterial wall for surgical simulation.

Identifieur interne : 000E90 ( PubMed/Corpus ); précédent : 000E89; suivant : 000E91

Quasi-linear viscoelastic modeling of arterial wall for surgical simulation.

Auteurs : Tao Yang ; Chee Kong Chui ; Rui Qi Yu ; Jing Qin ; Stephen K Y. Chang

Source :

RBID : pubmed:21487834

English descriptors

Abstract

Realistic soft tissue deformation modeling and haptic rendering for surgical simulation require accurate knowledge of tissue material characteristics. Biomechanical experiments on porcine tissue were performed, and a reduced quasi-linear viscoelastic model was developed to describe the strain-dependent relaxation behavior of the arterial wall. This information is used in surgical simulation to provide a realistic sensation of reduction in strength when the user holds a virtual blood vessel strained at different levels.

DOI: 10.1007/s11548-011-0560-x
PubMed: 21487834

Links to Exploration step

pubmed:21487834

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quasi-linear viscoelastic modeling of arterial wall for surgical simulation.</title>
<author>
<name sortKey="Yang, Tao" sort="Yang, Tao" uniqKey="Yang T" first="Tao" last="Yang">Tao Yang</name>
<affiliation>
<nlm:affiliation>Department of Computer Graphics and Interface, Institute for Infocomm Research, Singapore, Singapore. tyang@i2r.a-star.edu.sg</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chui, Chee Kong" sort="Chui, Chee Kong" uniqKey="Chui C" first="Chee Kong" last="Chui">Chee Kong Chui</name>
</author>
<author>
<name sortKey="Yu, Rui Qi" sort="Yu, Rui Qi" uniqKey="Yu R" first="Rui Qi" last="Yu">Rui Qi Yu</name>
</author>
<author>
<name sortKey="Qin, Jing" sort="Qin, Jing" uniqKey="Qin J" first="Jing" last="Qin">Jing Qin</name>
</author>
<author>
<name sortKey="Chang, Stephen K Y" sort="Chang, Stephen K Y" uniqKey="Chang S" first="Stephen K Y" last="Chang">Stephen K Y. Chang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="doi">10.1007/s11548-011-0560-x</idno>
<idno type="RBID">pubmed:21487834</idno>
<idno type="pmid">21487834</idno>
<idno type="wicri:Area/PubMed/Corpus">000E90</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quasi-linear viscoelastic modeling of arterial wall for surgical simulation.</title>
<author>
<name sortKey="Yang, Tao" sort="Yang, Tao" uniqKey="Yang T" first="Tao" last="Yang">Tao Yang</name>
<affiliation>
<nlm:affiliation>Department of Computer Graphics and Interface, Institute for Infocomm Research, Singapore, Singapore. tyang@i2r.a-star.edu.sg</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chui, Chee Kong" sort="Chui, Chee Kong" uniqKey="Chui C" first="Chee Kong" last="Chui">Chee Kong Chui</name>
</author>
<author>
<name sortKey="Yu, Rui Qi" sort="Yu, Rui Qi" uniqKey="Yu R" first="Rui Qi" last="Yu">Rui Qi Yu</name>
</author>
<author>
<name sortKey="Qin, Jing" sort="Qin, Jing" uniqKey="Qin J" first="Jing" last="Qin">Jing Qin</name>
</author>
<author>
<name sortKey="Chang, Stephen K Y" sort="Chang, Stephen K Y" uniqKey="Chang S" first="Stephen K Y" last="Chang">Stephen K Y. Chang</name>
</author>
</analytic>
<series>
<title level="j">International journal of computer assisted radiology and surgery</title>
<idno type="eISSN">1861-6429</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Arteries (physiology)</term>
<term>Arteries (surgery)</term>
<term>Biomechanical Phenomena</term>
<term>Elasticity</term>
<term>Equipment Design</term>
<term>Models, Biological</term>
<term>Models, Statistical</term>
<term>Stress, Mechanical</term>
<term>Swine</term>
<term>Tomography, X-Ray Computed</term>
<term>Viscosity</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arteries</term>
</keywords>
<keywords scheme="MESH" qualifier="surgery" xml:lang="en">
<term>Arteries</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biomechanical Phenomena</term>
<term>Elasticity</term>
<term>Equipment Design</term>
<term>Models, Biological</term>
<term>Models, Statistical</term>
<term>Stress, Mechanical</term>
<term>Swine</term>
<term>Tomography, X-Ray Computed</term>
<term>Viscosity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Realistic soft tissue deformation modeling and haptic rendering for surgical simulation require accurate knowledge of tissue material characteristics. Biomechanical experiments on porcine tissue were performed, and a reduced quasi-linear viscoelastic model was developed to describe the strain-dependent relaxation behavior of the arterial wall. This information is used in surgical simulation to provide a realistic sensation of reduction in strength when the user holds a virtual blood vessel strained at different levels.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">21487834</PMID>
<DateCreated>
<Year>2011</Year>
<Month>10</Month>
<Day>07</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>02</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1861-6429</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2011</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>International journal of computer assisted radiology and surgery</Title>
<ISOAbbreviation>Int J Comput Assist Radiol Surg</ISOAbbreviation>
</Journal>
<ArticleTitle>Quasi-linear viscoelastic modeling of arterial wall for surgical simulation.</ArticleTitle>
<Pagination>
<MedlinePgn>829-38</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11548-011-0560-x</ELocationID>
<Abstract>
<AbstractText Label="PURPOSE" NlmCategory="OBJECTIVE">Realistic soft tissue deformation modeling and haptic rendering for surgical simulation require accurate knowledge of tissue material characteristics. Biomechanical experiments on porcine tissue were performed, and a reduced quasi-linear viscoelastic model was developed to describe the strain-dependent relaxation behavior of the arterial wall. This information is used in surgical simulation to provide a realistic sensation of reduction in strength when the user holds a virtual blood vessel strained at different levels.</AbstractText>
<AbstractText Label="MATERIALS AND METHODS" NlmCategory="METHODS">Twelve pieces of porcine abdominal artery were tested with uniaxial elongation and relaxation test in both circumferential and longitudinal directions. The mechanical property testing system consists of automated environment control, testing, and data collection mechanism. A combined logarithm and polynomial strain energy equation was applied to model the elastic response of the specimens. The reduced relaxation function was modified by integrating a rational equation as a corrective factor to precisely describe the strain-dependent relaxation effects.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The experiments revealed that (1) stress is insensitive to strain rate in arterial tissue when the loading rate is low, and (2) the rate of stress relaxation of arterial wall is highly strain dependent. The proposed model can accurately represent the experimental data. Stress-strain function derived from the combined strain energy function is able to fit the tensile experimental data with R(2) equals to 0.9995 in circumferential direction and 0.999 in longitudinal direction. Modified reduced relaxation function is able to model the strain-dependent relaxation with R(2) equals to 0.9686 in circumferential direction and 0.988 in longitudinal direction.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The proposed model, based on extensive biomechanical experiments, can be used for accurate simulation of arterial deformation and haptic rendering in surgical simulation. The resultant model enables stress relaxation status to be determined when subjected to different strain levels.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Computer Graphics and Interface, Institute for Infocomm Research, Singapore, Singapore. tyang@i2r.a-star.edu.sg</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chui</LastName>
<ForeName>Chee Kong</ForeName>
<Initials>CK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Rui Qi</ForeName>
<Initials>RQ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Qin</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Stephen K Y</ForeName>
<Initials>SK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>04</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Int J Comput Assist Radiol Surg</MedlineTA>
<NlmUniqueID>101499225</NlmUniqueID>
<ISSNLinking>1861-6410</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001158">Arteries</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000601">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001696">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004548">Elasticity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008954">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015233">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013314">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013552">Swine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014057">Tomography, X-Ray Computed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014783">Viscosity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>1</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>3</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2011</Year>
<Month>4</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s11548-011-0560-x</ArticleId>
<ArticleId IdType="pubmed">21487834</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E90 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000E90 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21487834
   |texte=   Quasi-linear viscoelastic modeling of arterial wall for surgical simulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21487834" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024