Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dual pathways for haptic and visual perception of spatial and texture information.

Identifieur interne : 000E66 ( PubMed/Corpus ); précédent : 000E65; suivant : 000E67

Dual pathways for haptic and visual perception of spatial and texture information.

Auteurs : K. Sathian ; Simon Lacey ; Randall Stilla ; Gregory O. Gibson ; Gopikrishna Deshpande ; Xiaoping Hu ; Stephen Laconte ; Christopher Glielmi

Source :

RBID : pubmed:21575727

English descriptors

Abstract

Segregation of information flow along a dorsally directed pathway for processing object location and a ventrally directed pathway for processing object identity is well established in the visual and auditory systems, but is less clear in the somatosensory system. We hypothesized that segregation of location vs. identity information in touch would be evident if texture is the relevant property for stimulus identity, given the salience of texture for touch. Here, we used functional magnetic resonance imaging (fMRI) to investigate whether the pathways for haptic and visual processing of location and texture are segregated, and the extent of bisensory convergence. Haptic texture-selectivity was found in the parietal operculum and posterior visual cortex bilaterally, and in parts of left inferior frontal cortex. There was bisensory texture-selectivity at some of these sites in posterior visual and left inferior frontal cortex. Connectivity analyses demonstrated, in each modality, flow of information from unisensory non-selective areas to modality-specific texture-selective areas and further to bisensory texture-selective areas. Location-selectivity was mostly bisensory, occurring in dorsal areas, including the frontal eye fields and multiple regions around the intraparietal sulcus bilaterally. Many of these regions received input from unisensory areas in both modalities. Together with earlier studies, the activation and connectivity analyses of the present study establish that somatosensory processing flows into segregated pathways for location and object identity information. The location-selective somatosensory pathway converges with its visual counterpart in dorsal frontoparietal cortex, while the texture-selective somatosensory pathway runs through the parietal operculum before converging with its visual counterpart in visual and frontal cortex. Both segregation of sensory processing according to object property and multisensory convergence appear to be universal organizing principles.

DOI: 10.1016/j.neuroimage.2011.05.001
PubMed: 21575727

Links to Exploration step

pubmed:21575727

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dual pathways for haptic and visual perception of spatial and texture information.</title>
<author>
<name sortKey="Sathian, K" sort="Sathian, K" uniqKey="Sathian K" first="K" last="Sathian">K. Sathian</name>
<affiliation>
<nlm:affiliation>Department of Neurology, Emory University, Atlanta, GA, USA. krish.sathian@emory.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lacey, Simon" sort="Lacey, Simon" uniqKey="Lacey S" first="Simon" last="Lacey">Simon Lacey</name>
</author>
<author>
<name sortKey="Stilla, Randall" sort="Stilla, Randall" uniqKey="Stilla R" first="Randall" last="Stilla">Randall Stilla</name>
</author>
<author>
<name sortKey="Gibson, Gregory O" sort="Gibson, Gregory O" uniqKey="Gibson G" first="Gregory O" last="Gibson">Gregory O. Gibson</name>
</author>
<author>
<name sortKey="Deshpande, Gopikrishna" sort="Deshpande, Gopikrishna" uniqKey="Deshpande G" first="Gopikrishna" last="Deshpande">Gopikrishna Deshpande</name>
</author>
<author>
<name sortKey="Hu, Xiaoping" sort="Hu, Xiaoping" uniqKey="Hu X" first="Xiaoping" last="Hu">Xiaoping Hu</name>
</author>
<author>
<name sortKey="Laconte, Stephen" sort="Laconte, Stephen" uniqKey="Laconte S" first="Stephen" last="Laconte">Stephen Laconte</name>
</author>
<author>
<name sortKey="Glielmi, Christopher" sort="Glielmi, Christopher" uniqKey="Glielmi C" first="Christopher" last="Glielmi">Christopher Glielmi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="doi">10.1016/j.neuroimage.2011.05.001</idno>
<idno type="RBID">pubmed:21575727</idno>
<idno type="pmid">21575727</idno>
<idno type="wicri:Area/PubMed/Corpus">000E66</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dual pathways for haptic and visual perception of spatial and texture information.</title>
<author>
<name sortKey="Sathian, K" sort="Sathian, K" uniqKey="Sathian K" first="K" last="Sathian">K. Sathian</name>
<affiliation>
<nlm:affiliation>Department of Neurology, Emory University, Atlanta, GA, USA. krish.sathian@emory.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lacey, Simon" sort="Lacey, Simon" uniqKey="Lacey S" first="Simon" last="Lacey">Simon Lacey</name>
</author>
<author>
<name sortKey="Stilla, Randall" sort="Stilla, Randall" uniqKey="Stilla R" first="Randall" last="Stilla">Randall Stilla</name>
</author>
<author>
<name sortKey="Gibson, Gregory O" sort="Gibson, Gregory O" uniqKey="Gibson G" first="Gregory O" last="Gibson">Gregory O. Gibson</name>
</author>
<author>
<name sortKey="Deshpande, Gopikrishna" sort="Deshpande, Gopikrishna" uniqKey="Deshpande G" first="Gopikrishna" last="Deshpande">Gopikrishna Deshpande</name>
</author>
<author>
<name sortKey="Hu, Xiaoping" sort="Hu, Xiaoping" uniqKey="Hu X" first="Xiaoping" last="Hu">Xiaoping Hu</name>
</author>
<author>
<name sortKey="Laconte, Stephen" sort="Laconte, Stephen" uniqKey="Laconte S" first="Stephen" last="Laconte">Stephen Laconte</name>
</author>
<author>
<name sortKey="Glielmi, Christopher" sort="Glielmi, Christopher" uniqKey="Glielmi C" first="Christopher" last="Glielmi">Christopher Glielmi</name>
</author>
</analytic>
<series>
<title level="j">NeuroImage</title>
<idno type="eISSN">1095-9572</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adolescent</term>
<term>Brain (anatomy & histology)</term>
<term>Brain (physiology)</term>
<term>Brain Mapping</term>
<term>Female</term>
<term>Humans</term>
<term>Image Interpretation, Computer-Assisted</term>
<term>Magnetic Resonance Imaging</term>
<term>Male</term>
<term>Neural Pathways (anatomy & histology)</term>
<term>Neural Pathways (physiology)</term>
<term>Touch Perception (physiology)</term>
<term>Visual Perception (physiology)</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Brain</term>
<term>Neural Pathways</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Brain</term>
<term>Neural Pathways</term>
<term>Touch Perception</term>
<term>Visual Perception</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adolescent</term>
<term>Brain Mapping</term>
<term>Female</term>
<term>Humans</term>
<term>Image Interpretation, Computer-Assisted</term>
<term>Magnetic Resonance Imaging</term>
<term>Male</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Segregation of information flow along a dorsally directed pathway for processing object location and a ventrally directed pathway for processing object identity is well established in the visual and auditory systems, but is less clear in the somatosensory system. We hypothesized that segregation of location vs. identity information in touch would be evident if texture is the relevant property for stimulus identity, given the salience of texture for touch. Here, we used functional magnetic resonance imaging (fMRI) to investigate whether the pathways for haptic and visual processing of location and texture are segregated, and the extent of bisensory convergence. Haptic texture-selectivity was found in the parietal operculum and posterior visual cortex bilaterally, and in parts of left inferior frontal cortex. There was bisensory texture-selectivity at some of these sites in posterior visual and left inferior frontal cortex. Connectivity analyses demonstrated, in each modality, flow of information from unisensory non-selective areas to modality-specific texture-selective areas and further to bisensory texture-selective areas. Location-selectivity was mostly bisensory, occurring in dorsal areas, including the frontal eye fields and multiple regions around the intraparietal sulcus bilaterally. Many of these regions received input from unisensory areas in both modalities. Together with earlier studies, the activation and connectivity analyses of the present study establish that somatosensory processing flows into segregated pathways for location and object identity information. The location-selective somatosensory pathway converges with its visual counterpart in dorsal frontoparietal cortex, while the texture-selective somatosensory pathway runs through the parietal operculum before converging with its visual counterpart in visual and frontal cortex. Both segregation of sensory processing according to object property and multisensory convergence appear to be universal organizing principles.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">21575727</PMID>
<DateCreated>
<Year>2011</Year>
<Month>06</Month>
<Day>13</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>10</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>02</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-9572</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>57</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jul</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>NeuroImage</Title>
<ISOAbbreviation>Neuroimage</ISOAbbreviation>
</Journal>
<ArticleTitle>Dual pathways for haptic and visual perception of spatial and texture information.</ArticleTitle>
<Pagination>
<MedlinePgn>462-75</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.neuroimage.2011.05.001</ELocationID>
<Abstract>
<AbstractText>Segregation of information flow along a dorsally directed pathway for processing object location and a ventrally directed pathway for processing object identity is well established in the visual and auditory systems, but is less clear in the somatosensory system. We hypothesized that segregation of location vs. identity information in touch would be evident if texture is the relevant property for stimulus identity, given the salience of texture for touch. Here, we used functional magnetic resonance imaging (fMRI) to investigate whether the pathways for haptic and visual processing of location and texture are segregated, and the extent of bisensory convergence. Haptic texture-selectivity was found in the parietal operculum and posterior visual cortex bilaterally, and in parts of left inferior frontal cortex. There was bisensory texture-selectivity at some of these sites in posterior visual and left inferior frontal cortex. Connectivity analyses demonstrated, in each modality, flow of information from unisensory non-selective areas to modality-specific texture-selective areas and further to bisensory texture-selective areas. Location-selectivity was mostly bisensory, occurring in dorsal areas, including the frontal eye fields and multiple regions around the intraparietal sulcus bilaterally. Many of these regions received input from unisensory areas in both modalities. Together with earlier studies, the activation and connectivity analyses of the present study establish that somatosensory processing flows into segregated pathways for location and object identity information. The location-selective somatosensory pathway converges with its visual counterpart in dorsal frontoparietal cortex, while the texture-selective somatosensory pathway runs through the parietal operculum before converging with its visual counterpart in visual and frontal cortex. Both segregation of sensory processing according to object property and multisensory convergence appear to be universal organizing principles.</AbstractText>
<CopyrightInformation>Copyright © 2011 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sathian</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurology, Emory University, Atlanta, GA, USA. krish.sathian@emory.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lacey</LastName>
<ForeName>Simon</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stilla</LastName>
<ForeName>Randall</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gibson</LastName>
<ForeName>Gregory O</ForeName>
<Initials>GO</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Deshpande</LastName>
<ForeName>Gopikrishna</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Xiaoping</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Laconte</LastName>
<ForeName>Stephen</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Glielmi</LastName>
<ForeName>Christopher</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>K24 EY017332</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K24 EY017332-01</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K24 EY17332</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB002009</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB002009</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB002009-08</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY012440</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY012440-09</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY12440</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>05</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Neuroimage</MedlineTA>
<NlmUniqueID>9215515</NlmUniqueID>
<ISSNLinking>1053-8119</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 1995 Sep 1;7(9):1934-41</RefSource>
<PMID Version="1">8528469</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1996 Jun;119 ( Pt 3):875-88</RefSource>
<PMID Version="1">8673499</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1996 Aug 15;16(16):5205-15</RefSource>
<PMID Version="1">8756449</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1997 Mar;77(3):1656-62</RefSource>
<PMID Version="1">9084631</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Somatosens Mot Res. 1996;13(3-4):287-306</RefSource>
<PMID Version="1">9110431</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1997 May;77(5):2268-92</RefSource>
<PMID Version="1">9163357</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3295-300</RefSource>
<PMID Version="1">9501256</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1998 Oct 1;395(6701):500-3</RefSource>
<PMID Version="1">9774105</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Cogn Brain Res. 1998 Oct;7(2):111-8</RefSource>
<PMID Version="1">9774714</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 1998 Nov;1(7):621-30</RefSource>
<PMID Version="1">10196571</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2004 Dec 8;24(49):11193-204</RefSource>
<PMID Version="1">15590936</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2005 Mar;25(1):230-42</RefSource>
<PMID Version="1">15734358</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2005 Apr 15;25(3):718-26</RefSource>
<PMID Version="1">15808973</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2005 Aug;25(4):370-7</RefSource>
<PMID Version="1">15852384</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12601-5</RefSource>
<PMID Version="1">16116098</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2006 Mar;27(3):267-76</RefSource>
<PMID Version="1">16092131</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 2006 May;29(5):250-6</RefSource>
<PMID Version="1">16529826</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2006 Nov 1;33(2):672-80</RefSource>
<PMID Version="1">16934491</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2006 Nov;175(4):618-25</RefSource>
<PMID Version="1">16819647</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2007 Feb 1;45(3):476-83</RefSource>
<PMID Version="1">16616940</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2007 Mar;17(3):713-31</RefSource>
<PMID Version="1">16648452</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2007 Feb;97(2):1633-41</RefSource>
<PMID Version="1">17135476</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2007 Aug;17(8):1800-11</RefSource>
<PMID Version="1">17032710</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Sci. 2007 Apr;30(2):189-201; discussion 201-39</RefSource>
<PMID Version="1">17705910</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2007 Sep 1;37(3):890-903</RefSource>
<PMID Version="1">17627845</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Oct 10;27(41):11091-102</RefSource>
<PMID Version="1">17928451</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Can J Exp Psychol. 2007 Sep;61(3):184-95</RefSource>
<PMID Version="1">17974313</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2008 Feb;11(2):224-31</RefSource>
<PMID Version="1">18193041</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2004 Apr 8;42(1):173-9</RefSource>
<PMID Version="1">15066274</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5658-63</RefSource>
<PMID Version="1">15064396</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2004 May;22(1):401-8</RefSource>
<PMID Version="1">15110033</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2004 May;16(4):665-82</RefSource>
<PMID Version="1">15165355</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 2004;27:169-92</RefSource>
<PMID Version="1">15217330</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2004 Aug;14(8):851-7</RefSource>
<PMID Version="1">15054058</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2004 Aug 6;305(5685):875-7</RefSource>
<PMID Version="1">15232072</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 1979;17(2):139-51</RefSource>
<PMID Version="1">111155</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 1984 Jan;11(1):67-83</RefSource>
<PMID Version="1">6696789</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1986 Oct 15;252(3):323-47</RefSource>
<PMID Version="1">3793980</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1987 Mar;434(1):43-94</RefSource>
<PMID Version="1">3552126</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1987 Jul 24;237(4813):417-20</RefSource>
<PMID Version="1">3603028</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1989 Apr 8;282(2):169-90</RefSource>
<PMID Version="1">2496153</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1989;76(2):292-306</RefSource>
<PMID Version="1">2767186</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 1989 Dec;12(12):513-9</RefSource>
<PMID Version="1">2480667</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1990 Jan 15;291(3):395-414</RefSource>
<PMID Version="1">2298940</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 1992 Jan;15(1):20-5</RefSource>
<PMID Version="1">1374953</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1992 Aug;68(2):518-27</RefSource>
<PMID Version="1">1527572</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1993 Apr;43(4):762-71</RefSource>
<PMID Version="1">8469337</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 1994 Jan 1;6(1):137-48</RefSource>
<PMID Version="1">8130929</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2008 Apr;29(4):411-21</RefSource>
<PMID Version="1">17497631</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2008 May 1;40(4):1807-14</RefSource>
<PMID Version="1">18329290</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Conscious Cogn. 2008 Sep;17(3):1016-31</RefSource>
<PMID Version="1">17689100</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2008 Oct;29(10):1123-38</RefSource>
<PMID Version="1">17924535</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2008 Nov 25;1242:59-72</RefSource>
<PMID Version="1">18585689</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2009 Jan;192(3):391-405</RefSource>
<PMID Version="1">18815774</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2008;8(10):13.1-19</RefSource>
<PMID Version="1">19146355</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2009 Apr;30(4):1361-73</RefSource>
<PMID Version="1">18537116</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2009 May;47(6):1609-14</RefSource>
<PMID Version="1">19133279</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2009 Jul 1;20(10):941-5</RefSource>
<PMID Version="1">19525880</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Topogr. 2009 May;21(3-4):269-74</RefSource>
<PMID Version="1">19330441</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2009 Sep;198(2-3):165-82</RefSource>
<PMID Version="1">19652959</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 Sep 2;29(35):10950-60</RefSource>
<PMID Version="1">19726653</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 Feb 1;49(3):1991-2000</RefSource>
<PMID Version="1">19732841</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cortex. 2010 Mar;46(3):282-97</RefSource>
<PMID Version="1">19540475</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2010 Aug;22(8):1739-53</RefSource>
<PMID Version="1">19642889</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2010 Jun;57(6):1446-56</RefSource>
<PMID Version="1">20659822</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2010 Nov;31(11):1813-21</RefSource>
<PMID Version="1">20162607</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Jan 15;54(2):875-91</RefSource>
<PMID Version="1">20817103</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Mar 1;55(1):420-33</RefSource>
<PMID Version="1">21111833</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurorehabil Neural Repair. 2011 Mar-Apr;25(3):210-22</RefSource>
<PMID Version="1">20935339</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Jul 1;57(1):22-36</RefSource>
<PMID Version="1">21316469</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cogn Affect Behav Neurosci. 2004 Jun;4(2):251-9</RefSource>
<PMID Version="1">15460931</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 1974 Jan;12(1):43-7</RefSource>
<PMID Version="1">4821188</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1974 Apr 12;70(1):55-70</RefSource>
<PMID Version="1">4207050</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2010 Sep;20(9):2027-42</RefSource>
<PMID Version="1">20051364</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Imaging. 2010 Oct;28(8):1058-65</RefSource>
<PMID Version="1">20444566</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2010;5(9). pii: e13107. doi: 10.1371/journal.pone.0013107</RefSource>
<PMID Version="1">20927345</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2000 Aug;84(2):780-97</RefSource>
<PMID Version="1">10938305</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11800-6</RefSource>
<PMID Version="1">11050212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2001 Mar;4(3):324-30</RefSource>
<PMID Version="1">11224551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2001 May;85(5):1823-35</RefSource>
<PMID Version="1">11352999</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Psychol (Amst). 2001 Apr;107(1-3):293-321</RefSource>
<PMID Version="1">11388140</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Cogn Brain Res. 2001 Oct;12(2):307-13</RefSource>
<PMID Version="1">11587899</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):12301-6</RefSource>
<PMID Version="1">11572938</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2002 Apr;15(4):870-8</RefSource>
<PMID Version="1">11906227</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2002 Mar 28;34(1):161-71</RefSource>
<PMID Version="1">11931750</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2002 Mar;3(3):201-15</RefSource>
<PMID Version="1">11994752</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2002 Sep;146(2):161-71</RefSource>
<PMID Version="1">12195518</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Cogn Brain Res. 2003 Jun;17(1):14-25</RefSource>
<PMID Version="1">12763188</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2004 Mar 10;24(10):2551-65</RefSource>
<PMID Version="1">15014131</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1993 Dec;54(6):697-705</RefSource>
<PMID Version="1">8134240</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1994 Nov;14(11 Pt 1):6336-53</RefSource>
<PMID Version="1">7965040</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1995 May;15(5 Pt 2):3821-39</RefSource>
<PMID Version="1">7751949</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000293">Adolescent</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001921">Brain</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000033">anatomy & histology</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D001931">Brain Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007090">Image Interpretation, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008279">Magnetic Resonance Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009434">Neural Pathways</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000033">anatomy & histology</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055698">Touch Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014796">Visual Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055815">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS300090</OtherID>
<OtherID Source="NLM">PMC3128427</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>2</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>4</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>5</Month>
<Day>2</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2011</Year>
<Month>5</Month>
<Day>7</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">S1053-8119(11)00489-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.neuroimage.2011.05.001</ArticleId>
<ArticleId IdType="pubmed">21575727</ArticleId>
<ArticleId IdType="pmc">PMC3128427</ArticleId>
<ArticleId IdType="mid">NIHMS300090</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000E66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21575727
   |texte=   Dual pathways for haptic and visual perception of spatial and texture information.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21575727" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024