Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modelling natural and artificial hands with synergies.

Identifieur interne : 000D96 ( PubMed/Corpus ); précédent : 000D95; suivant : 000D97

Modelling natural and artificial hands with synergies.

Auteurs : Antonio Bicchi ; Marco Gabiccini ; Marco Santello

Source :

RBID : pubmed:21969697

English descriptors

Abstract

We report on recent work in modelling the process of grasping and active touch by natural and artificial hands. Starting from observations made in human hands about the correlation of degrees of freedom in patterns of more frequent use (postural synergies), we consider the implications of a geometrical model accounting for such data, which is applicable to the pre-grasping phase occurring when shaping the hand before actual contact with the grasped object. To extend applicability of the synergy model to study force distribution in the actual grasp, we introduce a modified model including the mechanical compliance of the hand's musculotendinous system. Numerical results obtained by this model indicate that the same principal synergies observed from pre-grasp postural data are also fundamental in achieving proper grasp force distribution. To illustrate the concept of synergies in the dual domain of haptic sensing, we provide a review of models of how the complexity and heterogeneity of sensory information from touch can be harnessed in simplified, tractable abstractions. These abstractions are amenable to fast processing to enable quick reflexes as well as elaboration of high-level percepts. Applications of the synergy model to the design and control of artificial hands and tactile sensors are illustrated.

DOI: 10.1098/rstb.2011.0152
PubMed: 21969697

Links to Exploration step

pubmed:21969697

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modelling natural and artificial hands with synergies.</title>
<author>
<name sortKey="Bicchi, Antonio" sort="Bicchi, Antonio" uniqKey="Bicchi A" first="Antonio" last="Bicchi">Antonio Bicchi</name>
<affiliation>
<nlm:affiliation>Interdepartmental Research Center E. Piaggio, University of Pisa, Via Diotisalvi, 2, 56126 Pisa, Italy. bicchi@centropiaggio.unipi.it</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gabiccini, Marco" sort="Gabiccini, Marco" uniqKey="Gabiccini M" first="Marco" last="Gabiccini">Marco Gabiccini</name>
</author>
<author>
<name sortKey="Santello, Marco" sort="Santello, Marco" uniqKey="Santello M" first="Marco" last="Santello">Marco Santello</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="doi">10.1098/rstb.2011.0152</idno>
<idno type="RBID">pubmed:21969697</idno>
<idno type="pmid">21969697</idno>
<idno type="wicri:Area/PubMed/Corpus">000D96</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modelling natural and artificial hands with synergies.</title>
<author>
<name sortKey="Bicchi, Antonio" sort="Bicchi, Antonio" uniqKey="Bicchi A" first="Antonio" last="Bicchi">Antonio Bicchi</name>
<affiliation>
<nlm:affiliation>Interdepartmental Research Center E. Piaggio, University of Pisa, Via Diotisalvi, 2, 56126 Pisa, Italy. bicchi@centropiaggio.unipi.it</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gabiccini, Marco" sort="Gabiccini, Marco" uniqKey="Gabiccini M" first="Marco" last="Gabiccini">Marco Gabiccini</name>
</author>
<author>
<name sortKey="Santello, Marco" sort="Santello, Marco" uniqKey="Santello M" first="Marco" last="Santello">Marco Santello</name>
</author>
</analytic>
<series>
<title level="j">Philosophical transactions of the Royal Society of London. Series B, Biological sciences</title>
<idno type="eISSN">1471-2970</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Computer Simulation</term>
<term>Hand (physiology)</term>
<term>Hand Strength (physiology)</term>
<term>Humans</term>
<term>Models, Anatomic</term>
<term>Models, Biological</term>
<term>Muscle, Skeletal (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Hand</term>
<term>Hand Strength</term>
<term>Muscle, Skeletal</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Computer Simulation</term>
<term>Humans</term>
<term>Models, Anatomic</term>
<term>Models, Biological</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report on recent work in modelling the process of grasping and active touch by natural and artificial hands. Starting from observations made in human hands about the correlation of degrees of freedom in patterns of more frequent use (postural synergies), we consider the implications of a geometrical model accounting for such data, which is applicable to the pre-grasping phase occurring when shaping the hand before actual contact with the grasped object. To extend applicability of the synergy model to study force distribution in the actual grasp, we introduce a modified model including the mechanical compliance of the hand's musculotendinous system. Numerical results obtained by this model indicate that the same principal synergies observed from pre-grasp postural data are also fundamental in achieving proper grasp force distribution. To illustrate the concept of synergies in the dual domain of haptic sensing, we provide a review of models of how the complexity and heterogeneity of sensory information from touch can be harnessed in simplified, tractable abstractions. These abstractions are amenable to fast processing to enable quick reflexes as well as elaboration of high-level percepts. Applications of the synergy model to the design and control of artificial hands and tactile sensors are illustrated.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">21969697</PMID>
<DateCreated>
<Year>2011</Year>
<Month>10</Month>
<Day>04</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>04</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>01</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1471-2970</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>366</Volume>
<Issue>1581</Issue>
<PubDate>
<Year>2011</Year>
<Month>Nov</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</Title>
<ISOAbbreviation>Philos. Trans. R. Soc. Lond., B, Biol. Sci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Modelling natural and artificial hands with synergies.</ArticleTitle>
<Pagination>
<MedlinePgn>3153-61</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rstb.2011.0152</ELocationID>
<Abstract>
<AbstractText>We report on recent work in modelling the process of grasping and active touch by natural and artificial hands. Starting from observations made in human hands about the correlation of degrees of freedom in patterns of more frequent use (postural synergies), we consider the implications of a geometrical model accounting for such data, which is applicable to the pre-grasping phase occurring when shaping the hand before actual contact with the grasped object. To extend applicability of the synergy model to study force distribution in the actual grasp, we introduce a modified model including the mechanical compliance of the hand's musculotendinous system. Numerical results obtained by this model indicate that the same principal synergies observed from pre-grasp postural data are also fundamental in achieving proper grasp force distribution. To illustrate the concept of synergies in the dual domain of haptic sensing, we provide a review of models of how the complexity and heterogeneity of sensory information from touch can be harnessed in simplified, tractable abstractions. These abstractions are amenable to fast processing to enable quick reflexes as well as elaboration of high-level percepts. Applications of the synergy model to the design and control of artificial hands and tactile sensors are illustrated.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bicchi</LastName>
<ForeName>Antonio</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Interdepartmental Research Center E. Piaggio, University of Pisa, Via Diotisalvi, 2, 56126 Pisa, Italy. bicchi@centropiaggio.unipi.it</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gabiccini</LastName>
<ForeName>Marco</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Santello</LastName>
<ForeName>Marco</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Philos Trans R Soc Lond B Biol Sci</MedlineTA>
<NlmUniqueID>7503623</NlmUniqueID>
<ISSNLinking>0962-8436</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Jan 24;415(6870):429-33</RefSource>
<PMID Version="1">11807554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2011 Nov 12;366(1581):3123-32</RefSource>
<PMID Version="1">21969694</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2002 Nov;5(11):1226-35</RefSource>
<PMID Version="1">12404008</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 2004 Jun;96(6):2293-300</RefSource>
<PMID Version="1">15133016</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 2004 May;66(4):618-28</RefSource>
<PMID Version="1">15311661</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Sci. 1972 Sep-Oct;60(5):591-9</RefSource>
<PMID Version="1">4560171</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1995 Jan;73(1):88-101</RefSource>
<PMID Version="1">7714593</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1998 Dec 1;18(23):10105-15</RefSource>
<PMID Version="1">9822764</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1999 Jun;126(3):289-306</RefSource>
<PMID Version="1">10382616</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mov Sci. 2007 Aug;26(4):657-97</RefSource>
<PMID Version="1">17604860</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Feb 6;28(6):1271-81</RefSource>
<PMID Version="1">18256247</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Bull. 2008 Apr 15;75(6):737-41</RefSource>
<PMID Version="1">18394519</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2008;8(4):20.1-19</RefSource>
<PMID Version="1">18484859</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Oct 29;28(44):11165-73</RefSource>
<PMID Version="1">18971459</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2011 Nov 12;366(1581):3097-105</RefSource>
<PMID Version="1">21969691</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2011 Nov 12;366(1581):3115-22</RefSource>
<PMID Version="1">21969693</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2002 Feb 15;22(4):1426-35</RefSource>
<PMID Version="1">11850469</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001696">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006225">Hand</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018737">Hand Strength</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008953">Models, Anatomic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D008954">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018482">Muscle, Skeletal</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3172595</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">366/1581/3153</ArticleId>
<ArticleId IdType="doi">10.1098/rstb.2011.0152</ArticleId>
<ArticleId IdType="pubmed">21969697</ArticleId>
<ArticleId IdType="pmc">PMC3172595</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D96 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000D96 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21969697
   |texte=   Modelling natural and artificial hands with synergies.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21969697" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024