Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation.

Identifieur interne : 000C99 ( PubMed/Corpus ); précédent : 000C98; suivant : 000D00

iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation.

Auteurs : Jiting Li ; Ruoyin Zheng ; Yuru Zhang ; Jianchu Yao

Source :

RBID : pubmed:22275591

English descriptors

Abstract

This paper presents an interactive exoskeleton device for hand rehabilitation, iHandRehab, which aims to satisfy the essential requirements for both active and passive rehabilitation motions. iHandRehab is comprised of exoskeletons for the thumb and index finger. These exoskeletons are driven by distant actuation modules through a cable/sheath transmission mechanism. The exoskeleton for each finger has 4 degrees of freedom (DOF), providing independent control for all finger joints. The joint motion is accomplished by a parallelogram mechanism so that the joints of the device and their corresponding finger joints have the same angular displacement when they rotate. Thanks to this design, the joint angles can be measured by sensors real time and high level motion control is therefore made very simple without the need of complicated kinematics. The paper also discusses important issues when the device is used by different patients, including its adjustable joint range of motion (ROM) and adjustable range of phalanx length (ROPL). Experimentally collected data show that the achieved ROM is close to that of a healthy hand and the ROPL covers the size of a typical hand, satisfying the size need of regular hand rehabilitation. In order to evaluate the performance when it works as a haptic device in active mode, the equivalent moment of inertia (MOI) of the device is calculated. The results prove that the device has low inertia which is critical in order to obtain good backdrivability. Experimental analysis shows that the influence of friction accounts for a large portion of the driving torque and warrants future investigation.

DOI: 10.1109/ICORR.2011.5975387
PubMed: 22275591

Links to Exploration step

pubmed:22275591

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation.</title>
<author>
<name sortKey="Li, Jiting" sort="Li, Jiting" uniqKey="Li J" first="Jiting" last="Li">Jiting Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China. lijiting@buaa.edu.cn</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Ruoyin" sort="Zheng, Ruoyin" uniqKey="Zheng R" first="Ruoyin" last="Zheng">Ruoyin Zheng</name>
</author>
<author>
<name sortKey="Zhang, Yuru" sort="Zhang, Yuru" uniqKey="Zhang Y" first="Yuru" last="Zhang">Yuru Zhang</name>
</author>
<author>
<name sortKey="Yao, Jianchu" sort="Yao, Jianchu" uniqKey="Yao J" first="Jianchu" last="Yao">Jianchu Yao</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="doi">10.1109/ICORR.2011.5975387</idno>
<idno type="RBID">pubmed:22275591</idno>
<idno type="pmid">22275591</idno>
<idno type="wicri:Area/PubMed/Corpus">000C99</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation.</title>
<author>
<name sortKey="Li, Jiting" sort="Li, Jiting" uniqKey="Li J" first="Jiting" last="Li">Jiting Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China. lijiting@buaa.edu.cn</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Ruoyin" sort="Zheng, Ruoyin" uniqKey="Zheng R" first="Ruoyin" last="Zheng">Ruoyin Zheng</name>
</author>
<author>
<name sortKey="Zhang, Yuru" sort="Zhang, Yuru" uniqKey="Zhang Y" first="Yuru" last="Zhang">Yuru Zhang</name>
</author>
<author>
<name sortKey="Yao, Jianchu" sort="Yao, Jianchu" uniqKey="Yao J" first="Jianchu" last="Yao">Jianchu Yao</name>
</author>
</analytic>
<series>
<title level="j">IEEE ... International Conference on Rehabilitation Robotics : [proceedings]</title>
<idno type="eISSN">1945-7901</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Equipment Design</term>
<term>Finger Joint (physiology)</term>
<term>Fingers (physiology)</term>
<term>Hand (physiology)</term>
<term>Humans</term>
<term>Range of Motion, Articular</term>
<term>Robotics (instrumentation)</term>
<term>Robotics (methods)</term>
<term>Thumb (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Robotics</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Robotics</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Finger Joint</term>
<term>Fingers</term>
<term>Hand</term>
<term>Thumb</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Equipment Design</term>
<term>Humans</term>
<term>Range of Motion, Articular</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper presents an interactive exoskeleton device for hand rehabilitation, iHandRehab, which aims to satisfy the essential requirements for both active and passive rehabilitation motions. iHandRehab is comprised of exoskeletons for the thumb and index finger. These exoskeletons are driven by distant actuation modules through a cable/sheath transmission mechanism. The exoskeleton for each finger has 4 degrees of freedom (DOF), providing independent control for all finger joints. The joint motion is accomplished by a parallelogram mechanism so that the joints of the device and their corresponding finger joints have the same angular displacement when they rotate. Thanks to this design, the joint angles can be measured by sensors real time and high level motion control is therefore made very simple without the need of complicated kinematics. The paper also discusses important issues when the device is used by different patients, including its adjustable joint range of motion (ROM) and adjustable range of phalanx length (ROPL). Experimentally collected data show that the achieved ROM is close to that of a healthy hand and the ROPL covers the size of a typical hand, satisfying the size need of regular hand rehabilitation. In order to evaluate the performance when it works as a haptic device in active mode, the equivalent moment of inertia (MOI) of the device is calculated. The results prove that the device has low inertia which is critical in order to obtain good backdrivability. Experimental analysis shows that the influence of friction accounts for a large portion of the driving torque and warrants future investigation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22275591</PMID>
<DateCreated>
<Year>2012</Year>
<Month>01</Month>
<Day>25</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>07</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1945-7901</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2011</Volume>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>IEEE ... International Conference on Rehabilitation Robotics : [proceedings]</Title>
<ISOAbbreviation>IEEE Int Conf Rehabil Robot</ISOAbbreviation>
</Journal>
<ArticleTitle>iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation.</ArticleTitle>
<Pagination>
<MedlinePgn>5975387</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1109/ICORR.2011.5975387</ELocationID>
<Abstract>
<AbstractText>This paper presents an interactive exoskeleton device for hand rehabilitation, iHandRehab, which aims to satisfy the essential requirements for both active and passive rehabilitation motions. iHandRehab is comprised of exoskeletons for the thumb and index finger. These exoskeletons are driven by distant actuation modules through a cable/sheath transmission mechanism. The exoskeleton for each finger has 4 degrees of freedom (DOF), providing independent control for all finger joints. The joint motion is accomplished by a parallelogram mechanism so that the joints of the device and their corresponding finger joints have the same angular displacement when they rotate. Thanks to this design, the joint angles can be measured by sensors real time and high level motion control is therefore made very simple without the need of complicated kinematics. The paper also discusses important issues when the device is used by different patients, including its adjustable joint range of motion (ROM) and adjustable range of phalanx length (ROPL). Experimentally collected data show that the achieved ROM is close to that of a healthy hand and the ROPL covers the size of a typical hand, satisfying the size need of regular hand rehabilitation. In order to evaluate the performance when it works as a haptic device in active mode, the equivalent moment of inertia (MOI) of the device is calculated. The results prove that the device has low inertia which is critical in order to obtain good backdrivability. Experimental analysis shows that the influence of friction accounts for a large portion of the driving torque and warrants future investigation.</AbstractText>
<CopyrightInformation>© 2011 IEEE</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jiting</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China. lijiting@buaa.edu.cn</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Ruoyin</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yuru</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yao</LastName>
<ForeName>Jianchu</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>IEEE Int Conf Rehabil Robot</MedlineTA>
<NlmUniqueID>101260913</NlmUniqueID>
<ISSNLinking>1945-7898</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001696">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005384">Finger Joint</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005385">Fingers</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006225">Hand</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016059">Range of Motion, Articular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012371">Robotics</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013933">Thumb</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1109/ICORR.2011.5975387</ArticleId>
<ArticleId IdType="pubmed">22275591</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C99 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000C99 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22275591
   |texte=   iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22275591" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024