Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neurosurgery Simulation Using Non-linear Finite Element Modeling and Haptic Interaction.

Identifieur interne : 000C64 ( PubMed/Corpus ); précédent : 000C63; suivant : 000C65

Neurosurgery Simulation Using Non-linear Finite Element Modeling and Haptic Interaction.

Auteurs : Huai-Ping Lee ; Michel Audette ; Grand Roman Joldes ; Andinet Enquobahrie

Source :

RBID : pubmed:24465116

Abstract

Real-time surgical simulation is becoming an important component of surgical training. To meet the real-time requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.

DOI: 10.1117/12.911987
PubMed: 24465116

Links to Exploration step

pubmed:24465116

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Neurosurgery Simulation Using Non-linear Finite Element Modeling and Haptic Interaction.</title>
<author>
<name sortKey="Lee, Huai Ping" sort="Lee, Huai Ping" uniqKey="Lee H" first="Huai-Ping" last="Lee">Huai-Ping Lee</name>
<affiliation>
<nlm:affiliation>Kitware Inc., Clifton Park, NY 12065, USA ; Dept. of Computer Science, Univ. of North Carolina, Chapel Hill, NC 27599, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Audette, Michel" sort="Audette, Michel" uniqKey="Audette M" first="Michel" last="Audette">Michel Audette</name>
<affiliation>
<nlm:affiliation>Dept. of MSVE, Old Dominion University, Norfolk, VA 23529, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Joldes, Grand Roman" sort="Joldes, Grand Roman" uniqKey="Joldes G" first="Grand Roman" last="Joldes">Grand Roman Joldes</name>
<affiliation>
<nlm:affiliation>School of Mechanical Engineering, The Univ. of Western Australia, Perth, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Enquobahrie, Andinet" sort="Enquobahrie, Andinet" uniqKey="Enquobahrie A" first="Andinet" last="Enquobahrie">Andinet Enquobahrie</name>
<affiliation>
<nlm:affiliation>Kitware Inc., Clifton Park, NY 12065, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="doi">10.1117/12.911987</idno>
<idno type="RBID">pubmed:24465116</idno>
<idno type="pmid">24465116</idno>
<idno type="wicri:Area/PubMed/Corpus">000C64</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Neurosurgery Simulation Using Non-linear Finite Element Modeling and Haptic Interaction.</title>
<author>
<name sortKey="Lee, Huai Ping" sort="Lee, Huai Ping" uniqKey="Lee H" first="Huai-Ping" last="Lee">Huai-Ping Lee</name>
<affiliation>
<nlm:affiliation>Kitware Inc., Clifton Park, NY 12065, USA ; Dept. of Computer Science, Univ. of North Carolina, Chapel Hill, NC 27599, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Audette, Michel" sort="Audette, Michel" uniqKey="Audette M" first="Michel" last="Audette">Michel Audette</name>
<affiliation>
<nlm:affiliation>Dept. of MSVE, Old Dominion University, Norfolk, VA 23529, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Joldes, Grand Roman" sort="Joldes, Grand Roman" uniqKey="Joldes G" first="Grand Roman" last="Joldes">Grand Roman Joldes</name>
<affiliation>
<nlm:affiliation>School of Mechanical Engineering, The Univ. of Western Australia, Perth, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Enquobahrie, Andinet" sort="Enquobahrie, Andinet" uniqKey="Enquobahrie A" first="Andinet" last="Enquobahrie">Andinet Enquobahrie</name>
<affiliation>
<nlm:affiliation>Kitware Inc., Clifton Park, NY 12065, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of SPIE--the International Society for Optical Engineering</title>
<idno type="ISSN">0277-786X</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Real-time surgical simulation is becoming an important component of surgical training. To meet the real-time requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">24465116</PMID>
<DateCreated>
<Year>2014</Year>
<Month>1</Month>
<Day>27</Day>
</DateCreated>
<DateRevised>
<Year>2015</Year>
<Month>5</Month>
<Day>6</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0277-786X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8316</Volume>
<PubDate>
<Year>2012</Year>
<Month>Feb</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of SPIE--the International Society for Optical Engineering</Title>
<ISOAbbreviation>Proc SPIE Int Soc Opt Eng</ISOAbbreviation>
</Journal>
<ArticleTitle>Neurosurgery Simulation Using Non-linear Finite Element Modeling and Haptic Interaction.</ArticleTitle>
<Pagination>
<MedlinePgn>83160H</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Real-time surgical simulation is becoming an important component of surgical training. To meet the real-time requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.</AbstractText>
</Abstract>
<AuthorList>
<Author>
<LastName>Lee</LastName>
<ForeName>Huai-Ping</ForeName>
<Initials>HP</Initials>
<AffiliationInfo>
<Affiliation>Kitware Inc., Clifton Park, NY 12065, USA ; Dept. of Computer Science, Univ. of North Carolina, Chapel Hill, NC 27599, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author>
<LastName>Audette</LastName>
<ForeName>Michel</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Dept. of MSVE, Old Dominion University, Norfolk, VA 23529, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author>
<LastName>Joldes</LastName>
<ForeName>Grand Roman</ForeName>
<Initials>GR</Initials>
<AffiliationInfo>
<Affiliation>School of Mechanical Engineering, The Univ. of Western Australia, Perth, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author>
<LastName>Enquobahrie</LastName>
<ForeName>Andinet</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Kitware Inc., Clifton Park, NY 12065, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>ENG</Language>
<GrantList>
<Grant>
<GrantID>R43 NS067742</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="">JOURNAL ARTICLE</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<MedlineTA>Proc SPIE Int Soc Opt Eng</MedlineTA>
<NlmUniqueID>101524122</NlmUniqueID>
<ISSNLinking>1018-4732</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">finite element method</Keyword>
<Keyword MajorTopicYN="N">haptic rendering</Keyword>
<Keyword MajorTopicYN="N">non-linear biomechanics</Keyword>
<Keyword MajorTopicYN="N">surgical simulation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1117/12.911987</ArticleId>
<ArticleId IdType="pubmed">24465116</ArticleId>
<ArticleId IdType="pmc">PMC3898833</ArticleId>
<ArticleId IdType="mid">NIHMS395325</ArticleId>
</ArticleIdList>
<pmc-dir>nihms</pmc-dir>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C64 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000C64 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24465116
   |texte=   Neurosurgery Simulation Using Non-linear Finite Element Modeling and Haptic Interaction.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24465116" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024