Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Egocentric and allocentric alignment tasks are affected by otolith input.

Identifieur interne : 000C26 ( PubMed/Corpus ); précédent : 000C25; suivant : 000C27

Egocentric and allocentric alignment tasks are affected by otolith input.

Auteurs : Alexander A. Tarnutzer ; Christopher J. Bockisch ; Itsaso Olasagasti ; Dominik Straumann

Source :

RBID : pubmed:22442575

English descriptors

Abstract

Gravicentric visual alignments become less precise when the head is roll-tilted relative to gravity, which is most likely due to decreasing otolith sensitivity. To align a luminous line with the perceived gravity vector (gravicentric task) or the perceived body-longitudinal axis (egocentric task), the roll orientation of the line on the retina and the torsional position of the eyes relative to the head must be integrated to obtain the line orientation relative to the head. Whether otolith input contributes to egocentric tasks and whether the modulation of variability is restricted to vision-dependent paradigms is unknown. In nine subjects we compared precision and accuracy of gravicentric and egocentric alignments in various roll positions (upright, 45°, and 75° right-ear down) using a luminous line (visual paradigm) in darkness. Trial-to-trial variability doubled for both egocentric and gravicentric alignments when roll-tilted. Two mechanisms might explain the roll-angle-dependent modulation in egocentric tasks: 1) Modulating variability in estimated ocular torsion, which reflects the roll-dependent precision of otolith signals, affects the precision of estimating the line orientation relative to the head; this hypothesis predicts that variability modulation is restricted to vision-dependent alignments. 2) Estimated body-longitudinal reflects the roll-dependent variability of perceived earth-vertical. Gravicentric cues are thereby integrated regardless of the task's reference frame. To test the two hypotheses the visual paradigm was repeated using a rod instead (haptic paradigm). As with the visual paradigm, precision significantly decreased with increasing head roll for both tasks. These findings propose that the CNS integrates input coded in a gravicentric frame to solve egocentric tasks. In analogy to gravicentric tasks, where trial-to-trial variability is mainly influenced by the properties of the otolith afferents, egocentric tasks may also integrate otolith input. Such a shared mechanism for both paradigms and frames of reference is supported by the significantly correlated trial-to-trial variabilities.

DOI: 10.1152/jn.00724.2010
PubMed: 22442575

Links to Exploration step

pubmed:22442575

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Egocentric and allocentric alignment tasks are affected by otolith input.</title>
<author>
<name sortKey="Tarnutzer, Alexander A" sort="Tarnutzer, Alexander A" uniqKey="Tarnutzer A" first="Alexander A" last="Tarnutzer">Alexander A. Tarnutzer</name>
<affiliation>
<nlm:affiliation>Dept. of Neurology, Univ. Hospital Zurich, Zurich, Switzerland. alexander.tarnutzer@access.uzh.ch</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bockisch, Christopher J" sort="Bockisch, Christopher J" uniqKey="Bockisch C" first="Christopher J" last="Bockisch">Christopher J. Bockisch</name>
</author>
<author>
<name sortKey="Olasagasti, Itsaso" sort="Olasagasti, Itsaso" uniqKey="Olasagasti I" first="Itsaso" last="Olasagasti">Itsaso Olasagasti</name>
</author>
<author>
<name sortKey="Straumann, Dominik" sort="Straumann, Dominik" uniqKey="Straumann D" first="Dominik" last="Straumann">Dominik Straumann</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="doi">10.1152/jn.00724.2010</idno>
<idno type="RBID">pubmed:22442575</idno>
<idno type="pmid">22442575</idno>
<idno type="wicri:Area/PubMed/Corpus">000C26</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Egocentric and allocentric alignment tasks are affected by otolith input.</title>
<author>
<name sortKey="Tarnutzer, Alexander A" sort="Tarnutzer, Alexander A" uniqKey="Tarnutzer A" first="Alexander A" last="Tarnutzer">Alexander A. Tarnutzer</name>
<affiliation>
<nlm:affiliation>Dept. of Neurology, Univ. Hospital Zurich, Zurich, Switzerland. alexander.tarnutzer@access.uzh.ch</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bockisch, Christopher J" sort="Bockisch, Christopher J" uniqKey="Bockisch C" first="Christopher J" last="Bockisch">Christopher J. Bockisch</name>
</author>
<author>
<name sortKey="Olasagasti, Itsaso" sort="Olasagasti, Itsaso" uniqKey="Olasagasti I" first="Itsaso" last="Olasagasti">Itsaso Olasagasti</name>
</author>
<author>
<name sortKey="Straumann, Dominik" sort="Straumann, Dominik" uniqKey="Straumann D" first="Dominik" last="Straumann">Dominik Straumann</name>
</author>
</analytic>
<series>
<title level="j">Journal of neurophysiology</title>
<idno type="eISSN">1522-1598</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Ego</term>
<term>Female</term>
<term>Gravity Sensing (physiology)</term>
<term>Head Movements (physiology)</term>
<term>Humans</term>
<term>Male</term>
<term>Motion Perception (physiology)</term>
<term>Orientation (physiology)</term>
<term>Otolithic Membrane (physiology)</term>
<term>Photic Stimulation (methods)</term>
<term>Psychomotor Performance (physiology)</term>
<term>Rotation</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Photic Stimulation</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gravity Sensing</term>
<term>Head Movements</term>
<term>Motion Perception</term>
<term>Orientation</term>
<term>Otolithic Membrane</term>
<term>Psychomotor Performance</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Ego</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Rotation</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Gravicentric visual alignments become less precise when the head is roll-tilted relative to gravity, which is most likely due to decreasing otolith sensitivity. To align a luminous line with the perceived gravity vector (gravicentric task) or the perceived body-longitudinal axis (egocentric task), the roll orientation of the line on the retina and the torsional position of the eyes relative to the head must be integrated to obtain the line orientation relative to the head. Whether otolith input contributes to egocentric tasks and whether the modulation of variability is restricted to vision-dependent paradigms is unknown. In nine subjects we compared precision and accuracy of gravicentric and egocentric alignments in various roll positions (upright, 45°, and 75° right-ear down) using a luminous line (visual paradigm) in darkness. Trial-to-trial variability doubled for both egocentric and gravicentric alignments when roll-tilted. Two mechanisms might explain the roll-angle-dependent modulation in egocentric tasks: 1) Modulating variability in estimated ocular torsion, which reflects the roll-dependent precision of otolith signals, affects the precision of estimating the line orientation relative to the head; this hypothesis predicts that variability modulation is restricted to vision-dependent alignments. 2) Estimated body-longitudinal reflects the roll-dependent variability of perceived earth-vertical. Gravicentric cues are thereby integrated regardless of the task's reference frame. To test the two hypotheses the visual paradigm was repeated using a rod instead (haptic paradigm). As with the visual paradigm, precision significantly decreased with increasing head roll for both tasks. These findings propose that the CNS integrates input coded in a gravicentric frame to solve egocentric tasks. In analogy to gravicentric tasks, where trial-to-trial variability is mainly influenced by the properties of the otolith afferents, egocentric tasks may also integrate otolith input. Such a shared mechanism for both paradigms and frames of reference is supported by the significantly correlated trial-to-trial variabilities.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22442575</PMID>
<DateCreated>
<Year>2012</Year>
<Month>06</Month>
<Day>04</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>04</Month>
<Day>02</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1598</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>107</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of neurophysiology</Title>
<ISOAbbreviation>J. Neurophysiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Egocentric and allocentric alignment tasks are affected by otolith input.</ArticleTitle>
<Pagination>
<MedlinePgn>3095-106</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/jn.00724.2010</ELocationID>
<Abstract>
<AbstractText>Gravicentric visual alignments become less precise when the head is roll-tilted relative to gravity, which is most likely due to decreasing otolith sensitivity. To align a luminous line with the perceived gravity vector (gravicentric task) or the perceived body-longitudinal axis (egocentric task), the roll orientation of the line on the retina and the torsional position of the eyes relative to the head must be integrated to obtain the line orientation relative to the head. Whether otolith input contributes to egocentric tasks and whether the modulation of variability is restricted to vision-dependent paradigms is unknown. In nine subjects we compared precision and accuracy of gravicentric and egocentric alignments in various roll positions (upright, 45°, and 75° right-ear down) using a luminous line (visual paradigm) in darkness. Trial-to-trial variability doubled for both egocentric and gravicentric alignments when roll-tilted. Two mechanisms might explain the roll-angle-dependent modulation in egocentric tasks: 1) Modulating variability in estimated ocular torsion, which reflects the roll-dependent precision of otolith signals, affects the precision of estimating the line orientation relative to the head; this hypothesis predicts that variability modulation is restricted to vision-dependent alignments. 2) Estimated body-longitudinal reflects the roll-dependent variability of perceived earth-vertical. Gravicentric cues are thereby integrated regardless of the task's reference frame. To test the two hypotheses the visual paradigm was repeated using a rod instead (haptic paradigm). As with the visual paradigm, precision significantly decreased with increasing head roll for both tasks. These findings propose that the CNS integrates input coded in a gravicentric frame to solve egocentric tasks. In analogy to gravicentric tasks, where trial-to-trial variability is mainly influenced by the properties of the otolith afferents, egocentric tasks may also integrate otolith input. Such a shared mechanism for both paradigms and frames of reference is supported by the significantly correlated trial-to-trial variabilities.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tarnutzer</LastName>
<ForeName>Alexander A</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>Dept. of Neurology, Univ. Hospital Zurich, Zurich, Switzerland. alexander.tarnutzer@access.uzh.ch</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bockisch</LastName>
<ForeName>Christopher J</ForeName>
<Initials>CJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Olasagasti</LastName>
<ForeName>Itsaso</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Straumann</LastName>
<ForeName>Dominik</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>03</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurophysiol</MedlineTA>
<NlmUniqueID>0375404</NlmUniqueID>
<ISSNLinking>0022-3077</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D004532">Ego</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018466">Gravity Sensing</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019416">Head Movements</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009039">Motion Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009949">Orientation</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010037">Otolithic Membrane</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010775">Photic Stimulation</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011597">Psychomotor Performance</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012399">Rotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055815">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2012</Year>
<Month>3</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>3</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>3</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">jn.00724.2010</ArticleId>
<ArticleId IdType="doi">10.1152/jn.00724.2010</ArticleId>
<ArticleId IdType="pubmed">22442575</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C26 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000C26 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22442575
   |texte=   Egocentric and allocentric alignment tasks are affected by otolith input.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22442575" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024