Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Simple display system of mechanical properties of cells and their dispersion.

Identifieur interne : 000C15 ( PubMed/Corpus ); précédent : 000C14; suivant : 000C16

Simple display system of mechanical properties of cells and their dispersion.

Auteurs : Yuji Shimizu ; Takanori Kihara ; Seyed Mohammad Ali Haghparast ; Shunsuke Yuba ; Jun Miyake

Source :

RBID : pubmed:22479595

English descriptors

Abstract

The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their dispersion using a haptic device and a PC. This system simulates atomic force microscopy (AFM) nanoindentation experiments for floating cells in virtual environments. An operator can virtually position the AFM spherical probe over a round cell with the haptic handle on the PC monitor and feel the force interaction. The Young's modulus of mesenchymal stem cells and HEK293 cells in the floating state was measured by AFM. The distribution of the Young's modulus of these cells was broad, and the distribution complied with a log-normal pattern. To represent the mechanical properties together with the cell variance, we used log-normal distribution-dependent random number determined by the mode and variance values of the Young's modulus of these cells. The represented Young's modulus was determined for each touching event of the probe surface and the cell object, and the haptic device-generating force was calculated using a Hertz model corresponding to the indentation depth and the fixed Young's modulus value. Using this system, we can feel the mechanical properties and their dispersion in each cell type in real time. This system will help us not only recognize the degrees of mechanical properties of diverse cells but also share them with others.

DOI: 10.1371/journal.pone.0034305
PubMed: 22479595

Links to Exploration step

pubmed:22479595

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Simple display system of mechanical properties of cells and their dispersion.</title>
<author>
<name sortKey="Shimizu, Yuji" sort="Shimizu, Yuji" uniqKey="Shimizu Y" first="Yuji" last="Shimizu">Yuji Shimizu</name>
<affiliation>
<nlm:affiliation>Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kihara, Takanori" sort="Kihara, Takanori" uniqKey="Kihara T" first="Takanori" last="Kihara">Takanori Kihara</name>
</author>
<author>
<name sortKey="Haghparast, Seyed Mohammad Ali" sort="Haghparast, Seyed Mohammad Ali" uniqKey="Haghparast S" first="Seyed Mohammad Ali" last="Haghparast">Seyed Mohammad Ali Haghparast</name>
</author>
<author>
<name sortKey="Yuba, Shunsuke" sort="Yuba, Shunsuke" uniqKey="Yuba S" first="Shunsuke" last="Yuba">Shunsuke Yuba</name>
</author>
<author>
<name sortKey="Miyake, Jun" sort="Miyake, Jun" uniqKey="Miyake J" first="Jun" last="Miyake">Jun Miyake</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="doi">10.1371/journal.pone.0034305</idno>
<idno type="RBID">pubmed:22479595</idno>
<idno type="pmid">22479595</idno>
<idno type="wicri:Area/PubMed/Corpus">000C15</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Simple display system of mechanical properties of cells and their dispersion.</title>
<author>
<name sortKey="Shimizu, Yuji" sort="Shimizu, Yuji" uniqKey="Shimizu Y" first="Yuji" last="Shimizu">Yuji Shimizu</name>
<affiliation>
<nlm:affiliation>Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kihara, Takanori" sort="Kihara, Takanori" uniqKey="Kihara T" first="Takanori" last="Kihara">Takanori Kihara</name>
</author>
<author>
<name sortKey="Haghparast, Seyed Mohammad Ali" sort="Haghparast, Seyed Mohammad Ali" uniqKey="Haghparast S" first="Seyed Mohammad Ali" last="Haghparast">Seyed Mohammad Ali Haghparast</name>
</author>
<author>
<name sortKey="Yuba, Shunsuke" sort="Yuba, Shunsuke" uniqKey="Yuba S" first="Shunsuke" last="Yuba">Shunsuke Yuba</name>
</author>
<author>
<name sortKey="Miyake, Jun" sort="Miyake, Jun" uniqKey="Miyake J" first="Jun" last="Miyake">Jun Miyake</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Biophysics (methods)</term>
<term>Computer Graphics</term>
<term>Computer Simulation</term>
<term>Computers</term>
<term>Cytological Techniques</term>
<term>Elastic Modulus</term>
<term>Equipment Design</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Mesenchymal Stromal Cells (cytology)</term>
<term>Microscopy, Atomic Force (methods)</term>
<term>Microscopy, Video (methods)</term>
<term>Models, Statistical</term>
<term>Stress, Mechanical</term>
<term>Surface Properties</term>
<term>Temperature</term>
<term>Time Factors</term>
<term>User-Computer Interface</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Mesenchymal Stromal Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biophysics</term>
<term>Microscopy, Atomic Force</term>
<term>Microscopy, Video</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Computer Graphics</term>
<term>Computer Simulation</term>
<term>Computers</term>
<term>Cytological Techniques</term>
<term>Elastic Modulus</term>
<term>Equipment Design</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Models, Statistical</term>
<term>Stress, Mechanical</term>
<term>Surface Properties</term>
<term>Temperature</term>
<term>Time Factors</term>
<term>User-Computer Interface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their dispersion using a haptic device and a PC. This system simulates atomic force microscopy (AFM) nanoindentation experiments for floating cells in virtual environments. An operator can virtually position the AFM spherical probe over a round cell with the haptic handle on the PC monitor and feel the force interaction. The Young's modulus of mesenchymal stem cells and HEK293 cells in the floating state was measured by AFM. The distribution of the Young's modulus of these cells was broad, and the distribution complied with a log-normal pattern. To represent the mechanical properties together with the cell variance, we used log-normal distribution-dependent random number determined by the mode and variance values of the Young's modulus of these cells. The represented Young's modulus was determined for each touching event of the probe surface and the cell object, and the haptic device-generating force was calculated using a Hertz model corresponding to the indentation depth and the fixed Young's modulus value. Using this system, we can feel the mechanical properties and their dispersion in each cell type in real time. This system will help us not only recognize the degrees of mechanical properties of diverse cells but also share them with others.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22479595</PMID>
<DateCreated>
<Year>2012</Year>
<Month>04</Month>
<Day>05</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>11</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Simple display system of mechanical properties of cells and their dispersion.</ArticleTitle>
<Pagination>
<MedlinePgn>e34305</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0034305</ELocationID>
<Abstract>
<AbstractText>The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their dispersion using a haptic device and a PC. This system simulates atomic force microscopy (AFM) nanoindentation experiments for floating cells in virtual environments. An operator can virtually position the AFM spherical probe over a round cell with the haptic handle on the PC monitor and feel the force interaction. The Young's modulus of mesenchymal stem cells and HEK293 cells in the floating state was measured by AFM. The distribution of the Young's modulus of these cells was broad, and the distribution complied with a log-normal pattern. To represent the mechanical properties together with the cell variance, we used log-normal distribution-dependent random number determined by the mode and variance values of the Young's modulus of these cells. The represented Young's modulus was determined for each touching event of the probe surface and the cell object, and the haptic device-generating force was calculated using a Hertz model corresponding to the indentation depth and the fixed Young's modulus value. Using this system, we can feel the mechanical properties and their dispersion in each cell type in real time. This system will help us not only recognize the degrees of mechanical properties of diverse cells but also share them with others.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shimizu</LastName>
<ForeName>Yuji</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kihara</LastName>
<ForeName>Takanori</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Haghparast</LastName>
<ForeName>Seyed Mohammad Ali</ForeName>
<Initials>SM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yuba</LastName>
<ForeName>Shunsuke</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Miyake</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>03</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2000 Apr;78(4):1725-35</RefSource>
<PMID Version="1">10733955</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 2011 May 27;409(1):1-6</RefSource>
<PMID Version="1">21510920</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Motil Cytoskeleton. 2001 Dec;50(4):173-9</RefSource>
<PMID Version="1">11807938</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Cell Physiol. 2002 Oct;283(4):C1219-27</RefSource>
<PMID Version="1">12225985</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechniques. 2003 Nov;35(5):1014-8, 1020-1</RefSource>
<PMID Version="1">14628675</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Orthop Res. 2004 Jan;22(1):131-9</RefSource>
<PMID Version="1">14656671</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Cell Physiol. 2004 Jul;287(1):C1-11</RefSource>
<PMID Version="1">15189819</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 1989 Aug 1;74(2):855-61</RefSource>
<PMID Version="1">2665857</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 1995 Mar;68(3):988-96</RefSource>
<PMID Version="1">7756561</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tissue Eng. 2005 May-Jun;11(5-6):663-73</RefSource>
<PMID Version="1">15998208</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comput Methods Programs Biomed. 2005 Dec;80(3):216-24</RefSource>
<PMID Version="1">16226827</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2006 Apr 1;90(7):2582-91</RefSource>
<PMID Version="1">16399828</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Mol Biol. 2006;319:331-61</RefSource>
<PMID Version="1">16719364</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Langmuir. 2006 Sep 12;22(19):8151-5</RefSource>
<PMID Version="1">16952255</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Med Robot. 2004 Jun;1(1):36-42</RefSource>
<PMID Version="1">17520595</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Nanotechnol. 2007 Dec;2(12):780-3</RefSource>
<PMID Version="1">18654431</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Med Robot. 2009 Sep;5(3):257-66</RefSource>
<PMID Version="1">19444793</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2009 Nov 27;326(5957):1208-12</RefSource>
<PMID Version="1">19965462</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2010 Jan 28;463(7280):485-92</RefSource>
<PMID Version="1">20110992</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Mol Cell Biol. 2010 May;11(5):353-65</RefSource>
<PMID Version="1">20414257</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cytoskeleton (Hoboken). 2010 Aug;67(8):496-503</RefSource>
<PMID Version="1">20535819</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2010 Oct 20;99(8):2479-87</RefSource>
<PMID Version="1">20959088</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Adh Migr. 2011 Jan-Feb;5(1):16-9</RefSource>
<PMID Version="1">20818154</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Apr 7;472(7341):51-6</RefSource>
<PMID Version="1">21475194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2001 Jun;3(6):607-10</RefSource>
<PMID Version="1">11389447</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001703">Biophysics</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003196">Computer Graphics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003201">Computers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003584">Cytological Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055119">Elastic Modulus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D057809">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D059630">Mesenchymal Stromal Cells</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000166">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018625">Microscopy, Atomic Force</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018715">Microscopy, Video</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015233">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013314">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013499">Surface Properties</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013696">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013997">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014584">User-Computer Interface</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3316616</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>12</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>2</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2012</Year>
<Month>3</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>11</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.pone.0034305</ArticleId>
<ArticleId IdType="pii">PONE-D-12-00046</ArticleId>
<ArticleId IdType="pubmed">22479595</ArticleId>
<ArticleId IdType="pmc">PMC3316616</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C15 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000C15 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22479595
   |texte=   Simple display system of mechanical properties of cells and their dispersion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22479595" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024