Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Breaking it down is better: haptic decomposition of complex movements aids in robot-assisted motor learning.

Identifieur interne : 000C08 ( PubMed/Corpus ); précédent : 000C07; suivant : 000C09

Breaking it down is better: haptic decomposition of complex movements aids in robot-assisted motor learning.

Auteurs : Julius Klein ; Steven J. Spencer ; David J. Reinkensmeyer

Source :

RBID : pubmed:22531825

English descriptors

Abstract

Training with haptic guidance has been proposed as a technique for learning complex movements in rehabilitation and sports, but it is unclear how to best deliver guidance-based training. Here, we hypothesized that breaking down a complex movement, similar to a tennis backhand, into simpler parts and then using haptic feedback from a robotic exoskeleton would help the motor system learn the movement. We also examined how the particular form of the decomposition affected learning. Three groups of unimpaired participants trained with the target arm movement broken down in three ways: 1) elbow flexion/extension and the unified shoulder motion independently ("anatomical" decomposition), 2) three component shoulder motions in Euler coordinates and elbow flexion/extension ("Euler" decomposition), or 3) the motion of the tip of the elbow and motion of the hand with respect to the elbow, independently ("visual" decomposition). A control group practiced the same number of movements, but experienced the target motion only, achieving eight times more direct practice with this motion. Despite less experience with the target motion, part training was better, but only when the arm trajectory was decomposed into anatomical components. Varying robotic movement training to include practice of simpler, anatomically-isolated motions may enhance its efficacy.

DOI: 10.1109/TNSRE.2012.2195202
PubMed: 22531825

Links to Exploration step

pubmed:22531825

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Breaking it down is better: haptic decomposition of complex movements aids in robot-assisted motor learning.</title>
<author>
<name sortKey="Klein, Julius" sort="Klein, Julius" uniqKey="Klein J" first="Julius" last="Klein">Julius Klein</name>
<affiliation>
<nlm:affiliation>Department of Mechanical and Aerospace Engineering, University of California-Irvine, Irvine, CA 92697, USA. juliusk@uci.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Spencer, Steven J" sort="Spencer, Steven J" uniqKey="Spencer S" first="Steven J" last="Spencer">Steven J. Spencer</name>
</author>
<author>
<name sortKey="Reinkensmeyer, David J" sort="Reinkensmeyer, David J" uniqKey="Reinkensmeyer D" first="David J" last="Reinkensmeyer">David J. Reinkensmeyer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="doi">10.1109/TNSRE.2012.2195202</idno>
<idno type="RBID">pubmed:22531825</idno>
<idno type="pmid">22531825</idno>
<idno type="wicri:Area/PubMed/Corpus">000C08</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Breaking it down is better: haptic decomposition of complex movements aids in robot-assisted motor learning.</title>
<author>
<name sortKey="Klein, Julius" sort="Klein, Julius" uniqKey="Klein J" first="Julius" last="Klein">Julius Klein</name>
<affiliation>
<nlm:affiliation>Department of Mechanical and Aerospace Engineering, University of California-Irvine, Irvine, CA 92697, USA. juliusk@uci.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Spencer, Steven J" sort="Spencer, Steven J" uniqKey="Spencer S" first="Steven J" last="Spencer">Steven J. Spencer</name>
</author>
<author>
<name sortKey="Reinkensmeyer, David J" sort="Reinkensmeyer, David J" uniqKey="Reinkensmeyer D" first="David J" last="Reinkensmeyer">David J. Reinkensmeyer</name>
</author>
</analytic>
<series>
<title level="j">IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society</title>
<idno type="eISSN">1558-0210</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Algorithms</term>
<term>Arm (physiology)</term>
<term>Biomechanical Phenomena</term>
<term>Data Interpretation, Statistical</term>
<term>Female</term>
<term>Gravitation</term>
<term>Humans</term>
<term>Joints (physiology)</term>
<term>Learning (physiology)</term>
<term>Male</term>
<term>Memory (physiology)</term>
<term>Motor Skills (physiology)</term>
<term>Movement (physiology)</term>
<term>Robotics (methods)</term>
<term>Stroke (rehabilitation)</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Robotics</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arm</term>
<term>Joints</term>
<term>Learning</term>
<term>Memory</term>
<term>Motor Skills</term>
<term>Movement</term>
</keywords>
<keywords scheme="MESH" qualifier="rehabilitation" xml:lang="en">
<term>Stroke</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Algorithms</term>
<term>Biomechanical Phenomena</term>
<term>Data Interpretation, Statistical</term>
<term>Female</term>
<term>Gravitation</term>
<term>Humans</term>
<term>Male</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Training with haptic guidance has been proposed as a technique for learning complex movements in rehabilitation and sports, but it is unclear how to best deliver guidance-based training. Here, we hypothesized that breaking down a complex movement, similar to a tennis backhand, into simpler parts and then using haptic feedback from a robotic exoskeleton would help the motor system learn the movement. We also examined how the particular form of the decomposition affected learning. Three groups of unimpaired participants trained with the target arm movement broken down in three ways: 1) elbow flexion/extension and the unified shoulder motion independently ("anatomical" decomposition), 2) three component shoulder motions in Euler coordinates and elbow flexion/extension ("Euler" decomposition), or 3) the motion of the tip of the elbow and motion of the hand with respect to the elbow, independently ("visual" decomposition). A control group practiced the same number of movements, but experienced the target motion only, achieving eight times more direct practice with this motion. Despite less experience with the target motion, part training was better, but only when the arm trajectory was decomposed into anatomical components. Varying robotic movement training to include practice of simpler, anatomically-isolated motions may enhance its efficacy.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22531825</PMID>
<DateCreated>
<Year>2012</Year>
<Month>05</Month>
<Day>24</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>09</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1558-0210</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2012</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society</Title>
<ISOAbbreviation>IEEE Trans Neural Syst Rehabil Eng</ISOAbbreviation>
</Journal>
<ArticleTitle>Breaking it down is better: haptic decomposition of complex movements aids in robot-assisted motor learning.</ArticleTitle>
<Pagination>
<MedlinePgn>268-75</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1109/TNSRE.2012.2195202</ELocationID>
<Abstract>
<AbstractText>Training with haptic guidance has been proposed as a technique for learning complex movements in rehabilitation and sports, but it is unclear how to best deliver guidance-based training. Here, we hypothesized that breaking down a complex movement, similar to a tennis backhand, into simpler parts and then using haptic feedback from a robotic exoskeleton would help the motor system learn the movement. We also examined how the particular form of the decomposition affected learning. Three groups of unimpaired participants trained with the target arm movement broken down in three ways: 1) elbow flexion/extension and the unified shoulder motion independently ("anatomical" decomposition), 2) three component shoulder motions in Euler coordinates and elbow flexion/extension ("Euler" decomposition), or 3) the motion of the tip of the elbow and motion of the hand with respect to the elbow, independently ("visual" decomposition). A control group practiced the same number of movements, but experienced the target motion only, achieving eight times more direct practice with this motion. Despite less experience with the target motion, part training was better, but only when the arm trajectory was decomposed into anatomical components. Varying robotic movement training to include practice of simpler, anatomically-isolated motions may enhance its efficacy.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Klein</LastName>
<ForeName>Julius</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical and Aerospace Engineering, University of California-Irvine, Irvine, CA 92697, USA. juliusk@uci.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Spencer</LastName>
<ForeName>Steven J</ForeName>
<Initials>SJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reinkensmeyer</LastName>
<ForeName>David J</ForeName>
<Initials>DJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>M01RR00827</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>N01-HD-3-3352</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>N01HD33352</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016449">Randomized Controlled Trial</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>04</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>IEEE Trans Neural Syst Rehabil Eng</MedlineTA>
<NlmUniqueID>101097023</NlmUniqueID>
<ISSNLinking>1534-4320</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2003 Apr;89(4):2279-88</RefSource>
<PMID Version="1">12612022</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Res Q Exerc Sport. 2003 Mar;74(1):104-9</RefSource>
<PMID Version="1">12659481</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol Learn Mem Cogn. 1983 Apr;9(2):334-45</RefSource>
<PMID Version="1">6222149</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Biol Eng Comput. 1987 Sep;25(5):527-32</RefSource>
<PMID Version="1">3446974</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Cogn. 1988 Dec;8(3):326-47</RefSource>
<PMID Version="1">3214589</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1989 Aug;62(2):582-94</RefSource>
<PMID Version="1">2769349</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1994 May;14(5 Pt 2):3208-24</RefSource>
<PMID Version="1">8182467</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Res Q Exerc Sport. 1994 Dec;65(4):316-23</RefSource>
<PMID Version="1">7886280</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1997 Feb;77(2):826-52</RefSource>
<PMID Version="1">9065853</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol. 1954 Nov;48(5):375-80</RefSource>
<PMID Version="1">13221731</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Biol Eng Comput. 2005 Jan;43(1):2-10</RefSource>
<PMID Version="1">15742713</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Res Q Exerc Sport. 2005 Mar;76(1):60-6</RefSource>
<PMID Version="1">15810771</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Surg. 2005 Sep;190(3):359-63</RefSource>
<PMID Version="1">16105518</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stroke. 2005 Sep;36(9):1960-6</RefSource>
<PMID Version="1">16109908</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mot Behav. 2007 Jan;39(1):40-8</RefSource>
<PMID Version="1">17251170</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):336-46</RefSource>
<PMID Version="1">17894266</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):356-66</RefSource>
<PMID Version="1">17894268</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Conf Proc IEEE Eng Med Biol Soc. 2007;2007:4011-4</RefSource>
<PMID Version="1">18002879</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2008 Feb;131(Pt 2):425-37</RefSource>
<PMID Version="1">18156154</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurorehabil Neural Repair. 2008 May-Jun;22(3):305-10</RefSource>
<PMID Version="1">18184932</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mot Behav. 2008 Nov;40(6):545-56</RefSource>
<PMID Version="1">18980907</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exerc Sport Sci Rev. 2009 Jan;37(1):43-51</RefSource>
<PMID Version="1">19098524</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurorehabil Neural Repair. 2009 Jan;23(1):5-13</RefSource>
<PMID Version="1">19109447</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroeng Rehabil. 2009;6:20</RefSource>
<PMID Version="1">19531254</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol Paris. 2009 Sep-Dec;103(3-5):276-85</RefSource>
<PMID Version="1">19665551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2010 Mar;201(2):119-31</RefSource>
<PMID Version="1">19787345</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 2011;48(4):355-66</RefSource>
<PMID Version="1">21674388</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Sports Sci. 2002 Jun;20(6):495-506</RefSource>
<PMID Version="1">12137179</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Sci. 2001 Oct;24(5):849-78; discussion 878-937</RefSource>
<PMID Version="1">12239891</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2003 Mar 6;338(3):205-8</RefSource>
<PMID Version="1">12581832</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mot Behav. 2003 Sep;35(3):296-308</RefSource>
<PMID Version="1">12873844</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001132">Arm</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001696">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003627">Data Interpretation, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006112">Gravitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007596">Joints</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007858">Learning</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008568">Memory</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009048">Motor Skills</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009068">Movement</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012371">Robotics</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D020521">Stroke</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000534">rehabilitation</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS560675</OtherID>
<OtherID Source="NLM">PMC4015469</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2012</Year>
<Month>4</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1109/TNSRE.2012.2195202</ArticleId>
<ArticleId IdType="pubmed">22531825</ArticleId>
<ArticleId IdType="pmc">PMC4015469</ArticleId>
<ArticleId IdType="mid">NIHMS560675</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C08 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000C08 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22531825
   |texte=   Breaking it down is better: haptic decomposition of complex movements aids in robot-assisted motor learning.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22531825" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024