Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Broadband measurement of translational and angular vibrations using a single continuously scanning laser Doppler vibrometer.

Identifieur interne : 000B29 ( PubMed/Corpus ); précédent : 000B28; suivant : 000B30

Broadband measurement of translational and angular vibrations using a single continuously scanning laser Doppler vibrometer.

Auteurs : Muhammad Salman ; Karim G. Sabra

Source :

RBID : pubmed:22978867

English descriptors

Abstract

A continuous scanning laser Doppler velocimetry (CSLDV) technique is used to measure the low frequency broadband vibrations associated with human skeletal muscle vibrations (typically f < 100 Hz) by continuously varying the orientation of laser beam over distances that are short compared to the characteristic wavelengths of the vibrations. The high frequency scan (compared to the vibration frequency) enables the detection of broadband translational and angular velocities at a single point using amplitude demodulation of the CSDLV signal. For instance, linear scans allow measurement of the normal surface velocity and one component of angular velocity vector, while circular scans allow measurement of an additional angular velocity component. This CSLDV technique is first validated here using gel samples mimicking soft tissues and then applied to measure multiple degrees of freedom (DOF) of a subject's hand exhibiting fatigue-induced tremor. Hence this CSLDV technique potentially provides a means for measuring multiple DOF of small human body parts (e.g., fingers, tendons, small muscles) for various applications (e.g., haptic technology, remote surgery) when the use of skin-mounted sensors (e.g. accelerometers) can be problematic due to mass-loading artifacts or tethering issues.

DOI: 10.1121/1.4740473
PubMed: 22978867

Links to Exploration step

pubmed:22978867

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Broadband measurement of translational and angular vibrations using a single continuously scanning laser Doppler vibrometer.</title>
<author>
<name sortKey="Salman, Muhammad" sort="Salman, Muhammad" uniqKey="Salman M" first="Muhammad" last="Salman">Muhammad Salman</name>
<affiliation>
<nlm:affiliation>Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA. msalman.usa@gatech.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sabra, Karim G" sort="Sabra, Karim G" uniqKey="Sabra K" first="Karim G" last="Sabra">Karim G. Sabra</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="doi">10.1121/1.4740473</idno>
<idno type="RBID">pubmed:22978867</idno>
<idno type="pmid">22978867</idno>
<idno type="wicri:Area/PubMed/Corpus">000B29</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Broadband measurement of translational and angular vibrations using a single continuously scanning laser Doppler vibrometer.</title>
<author>
<name sortKey="Salman, Muhammad" sort="Salman, Muhammad" uniqKey="Salman M" first="Muhammad" last="Salman">Muhammad Salman</name>
<affiliation>
<nlm:affiliation>Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA. msalman.usa@gatech.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sabra, Karim G" sort="Sabra, Karim G" uniqKey="Sabra K" first="Karim G" last="Sabra">Karim G. Sabra</name>
</author>
</analytic>
<series>
<title level="j">The Journal of the Acoustical Society of America</title>
<idno type="eISSN">1520-8524</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Biomechanical Phenomena</term>
<term>Gelatin</term>
<term>Hand</term>
<term>Humans</term>
<term>Laser-Doppler Flowmetry (instrumentation)</term>
<term>Linear Models</term>
<term>Male</term>
<term>Muscle Contraction</term>
<term>Muscle Fatigue</term>
<term>Muscle, Skeletal (physiopathology)</term>
<term>Phantoms, Imaging</term>
<term>Reproducibility of Results</term>
<term>Signal Processing, Computer-Assisted</term>
<term>Tremor (physiopathology)</term>
<term>Vibration</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Gelatin</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Laser-Doppler Flowmetry</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Muscle, Skeletal</term>
<term>Tremor</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Biomechanical Phenomena</term>
<term>Hand</term>
<term>Humans</term>
<term>Linear Models</term>
<term>Male</term>
<term>Muscle Contraction</term>
<term>Muscle Fatigue</term>
<term>Phantoms, Imaging</term>
<term>Reproducibility of Results</term>
<term>Signal Processing, Computer-Assisted</term>
<term>Vibration</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A continuous scanning laser Doppler velocimetry (CSLDV) technique is used to measure the low frequency broadband vibrations associated with human skeletal muscle vibrations (typically f < 100 Hz) by continuously varying the orientation of laser beam over distances that are short compared to the characteristic wavelengths of the vibrations. The high frequency scan (compared to the vibration frequency) enables the detection of broadband translational and angular velocities at a single point using amplitude demodulation of the CSDLV signal. For instance, linear scans allow measurement of the normal surface velocity and one component of angular velocity vector, while circular scans allow measurement of an additional angular velocity component. This CSLDV technique is first validated here using gel samples mimicking soft tissues and then applied to measure multiple degrees of freedom (DOF) of a subject's hand exhibiting fatigue-induced tremor. Hence this CSLDV technique potentially provides a means for measuring multiple DOF of small human body parts (e.g., fingers, tendons, small muscles) for various applications (e.g., haptic technology, remote surgery) when the use of skin-mounted sensors (e.g. accelerometers) can be problematic due to mass-loading artifacts or tethering issues.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22978867</PMID>
<DateCreated>
<Year>2012</Year>
<Month>09</Month>
<Day>17</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>02</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1520-8524</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>132</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2012</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>The Journal of the Acoustical Society of America</Title>
<ISOAbbreviation>J. Acoust. Soc. Am.</ISOAbbreviation>
</Journal>
<ArticleTitle>Broadband measurement of translational and angular vibrations using a single continuously scanning laser Doppler vibrometer.</ArticleTitle>
<Pagination>
<MedlinePgn>1384-91</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1121/1.4740473</ELocationID>
<Abstract>
<AbstractText>A continuous scanning laser Doppler velocimetry (CSLDV) technique is used to measure the low frequency broadband vibrations associated with human skeletal muscle vibrations (typically f < 100 Hz) by continuously varying the orientation of laser beam over distances that are short compared to the characteristic wavelengths of the vibrations. The high frequency scan (compared to the vibration frequency) enables the detection of broadband translational and angular velocities at a single point using amplitude demodulation of the CSDLV signal. For instance, linear scans allow measurement of the normal surface velocity and one component of angular velocity vector, while circular scans allow measurement of an additional angular velocity component. This CSLDV technique is first validated here using gel samples mimicking soft tissues and then applied to measure multiple degrees of freedom (DOF) of a subject's hand exhibiting fatigue-induced tremor. Hence this CSLDV technique potentially provides a means for measuring multiple DOF of small human body parts (e.g., fingers, tendons, small muscles) for various applications (e.g., haptic technology, remote surgery) when the use of skin-mounted sensors (e.g. accelerometers) can be problematic due to mass-loading artifacts or tethering issues.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Salman</LastName>
<ForeName>Muhammad</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA. msalman.usa@gatech.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sabra</LastName>
<ForeName>Karim G</ForeName>
<Initials>KG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Acoust Soc Am</MedlineTA>
<NlmUniqueID>7503051</NlmUniqueID>
<ISSNLinking>0001-4966</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>9000-70-8</RegistryNumber>
<NameOfSubstance UI="D005780">Gelatin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001696">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005780">Gelatin</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006225">Hand</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017078">Laser-Doppler Flowmetry</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016014">Linear Models</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009119">Muscle Contraction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018763">Muscle Fatigue</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018482">Muscle, Skeletal</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000503">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019047">Phantoms, Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015203">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012815">Signal Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014202">Tremor</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000503">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014732">Vibration</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1121/1.4740473</ArticleId>
<ArticleId IdType="pubmed">22978867</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B29 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000B29 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22978867
   |texte=   Broadband measurement of translational and angular vibrations using a single continuously scanning laser Doppler vibrometer.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22978867" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024