Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Intra-areal and corticocortical circuits arising in the dysgranular zone of rat primary somatosensory cortex that processes deep somatic input.

Identifieur interne : 000A49 ( PubMed/Corpus ); précédent : 000A48; suivant : 000A50

Intra-areal and corticocortical circuits arising in the dysgranular zone of rat primary somatosensory cortex that processes deep somatic input.

Auteurs : Uhnoh Kim ; Taehee Lee

Source :

RBID : pubmed:23322443

English descriptors

Abstract

Somesthesis-guided exploration of the external world requires cortical processing of both cutaneous and proprioceptive information and their integration into motor commands to guide further haptic movement. In the past, attention has been given mostly to the cortical circuits processing cutaneous information for somatic motor integration. By comparison, little has been examined about how cortical circuits are organized for higher order proprioceptive processing. Using the rat cortex as a model, we characterized the intrinsic and corticocortical circuits arising in the major proprioceptive region of the primary somatosensory cortex (SI) that is conventionally referred to as the dysgranular zone (DSZ). We made small injections of biotinylated dextran amine (BDA) as an anterograde tracer in various parts of the DSZ, revealing three distinct principles of its cortical circuit organization. First, its intrinsic circuits extend mainly along the major axis of DSZ to organize multiple patches of interconnections. Second, the central and peripheral regions of DSZ produce differential patterns of intra-areal and corticocortical circuits. Third, the projection fields of DSZ encompass only selective regions of the second somatic (SII), posterior parietal (PPC), and primary motor (MI) cortices. These projection fields are at least partially separated from those of SI cutaneous areas. We hypothesize, based on these observations, that the cortical circuits of DSZ facilitate a modular integration of proprioceptive information along its major axis and disseminate this information to only selective parts of higher order somatic and MI cortices in parallel with cutaneous information.

DOI: 10.1002/cne.23300
PubMed: 23322443

Links to Exploration step

pubmed:23322443

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Intra-areal and corticocortical circuits arising in the dysgranular zone of rat primary somatosensory cortex that processes deep somatic input.</title>
<author>
<name sortKey="Kim, Uhnoh" sort="Kim, Uhnoh" uniqKey="Kim U" first="Uhnoh" last="Kim">Uhnoh Kim</name>
<affiliation>
<nlm:affiliation>Department of Neurosurgery and Interdepartmental Neuroscience Program, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA. ukim@hmc.psu.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lee, Taehee" sort="Lee, Taehee" uniqKey="Lee T" first="Taehee" last="Lee">Taehee Lee</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.1002/cne.23300</idno>
<idno type="RBID">pubmed:23322443</idno>
<idno type="pmid">23322443</idno>
<idno type="wicri:Area/PubMed/Corpus">000A49</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Intra-areal and corticocortical circuits arising in the dysgranular zone of rat primary somatosensory cortex that processes deep somatic input.</title>
<author>
<name sortKey="Kim, Uhnoh" sort="Kim, Uhnoh" uniqKey="Kim U" first="Uhnoh" last="Kim">Uhnoh Kim</name>
<affiliation>
<nlm:affiliation>Department of Neurosurgery and Interdepartmental Neuroscience Program, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA. ukim@hmc.psu.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lee, Taehee" sort="Lee, Taehee" uniqKey="Lee T" first="Taehee" last="Lee">Taehee Lee</name>
</author>
</analytic>
<series>
<title level="j">The Journal of comparative neurology</title>
<idno type="eISSN">1096-9861</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Afferent Pathways (anatomy & histology)</term>
<term>Afferent Pathways (growth & development)</term>
<term>Afferent Pathways (physiology)</term>
<term>Animals</term>
<term>Biotin (analogs & derivatives)</term>
<term>Cerebral Cortex (anatomy & histology)</term>
<term>Cerebral Cortex (growth & development)</term>
<term>Cerebral Cortex (physiology)</term>
<term>Data Interpretation, Statistical</term>
<term>Dextrans</term>
<term>Female</term>
<term>Immunohistochemistry</term>
<term>Motor Cortex (physiology)</term>
<term>Perfusion</term>
<term>Phytohemagglutinins</term>
<term>Proprioception (physiology)</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Somatosensory Cortex (anatomy & histology)</term>
<term>Somatosensory Cortex (growth & development)</term>
<term>Somatosensory Cortex (physiology)</term>
<term>Vibrissae (innervation)</term>
<term>Vibrissae (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Biotin</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Afferent Pathways</term>
<term>Cerebral Cortex</term>
<term>Somatosensory Cortex</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Afferent Pathways</term>
<term>Cerebral Cortex</term>
<term>Somatosensory Cortex</term>
</keywords>
<keywords scheme="MESH" qualifier="innervation" xml:lang="en">
<term>Vibrissae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Afferent Pathways</term>
<term>Cerebral Cortex</term>
<term>Motor Cortex</term>
<term>Proprioception</term>
<term>Somatosensory Cortex</term>
<term>Vibrissae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Data Interpretation, Statistical</term>
<term>Dextrans</term>
<term>Female</term>
<term>Immunohistochemistry</term>
<term>Perfusion</term>
<term>Phytohemagglutinins</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Somesthesis-guided exploration of the external world requires cortical processing of both cutaneous and proprioceptive information and their integration into motor commands to guide further haptic movement. In the past, attention has been given mostly to the cortical circuits processing cutaneous information for somatic motor integration. By comparison, little has been examined about how cortical circuits are organized for higher order proprioceptive processing. Using the rat cortex as a model, we characterized the intrinsic and corticocortical circuits arising in the major proprioceptive region of the primary somatosensory cortex (SI) that is conventionally referred to as the dysgranular zone (DSZ). We made small injections of biotinylated dextran amine (BDA) as an anterograde tracer in various parts of the DSZ, revealing three distinct principles of its cortical circuit organization. First, its intrinsic circuits extend mainly along the major axis of DSZ to organize multiple patches of interconnections. Second, the central and peripheral regions of DSZ produce differential patterns of intra-areal and corticocortical circuits. Third, the projection fields of DSZ encompass only selective regions of the second somatic (SII), posterior parietal (PPC), and primary motor (MI) cortices. These projection fields are at least partially separated from those of SI cutaneous areas. We hypothesize, based on these observations, that the cortical circuits of DSZ facilitate a modular integration of proprioceptive information along its major axis and disseminate this information to only selective parts of higher order somatic and MI cortices in parallel with cutaneous information.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23322443</PMID>
<DateCreated>
<Year>2013</Year>
<Month>06</Month>
<Day>05</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>13</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1096-9861</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>521</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2013</Year>
<Month>Aug</Month>
<Day>1</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of comparative neurology</Title>
<ISOAbbreviation>J. Comp. Neurol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Intra-areal and corticocortical circuits arising in the dysgranular zone of rat primary somatosensory cortex that processes deep somatic input.</ArticleTitle>
<Pagination>
<MedlinePgn>2585-601</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/cne.23300</ELocationID>
<Abstract>
<AbstractText>Somesthesis-guided exploration of the external world requires cortical processing of both cutaneous and proprioceptive information and their integration into motor commands to guide further haptic movement. In the past, attention has been given mostly to the cortical circuits processing cutaneous information for somatic motor integration. By comparison, little has been examined about how cortical circuits are organized for higher order proprioceptive processing. Using the rat cortex as a model, we characterized the intrinsic and corticocortical circuits arising in the major proprioceptive region of the primary somatosensory cortex (SI) that is conventionally referred to as the dysgranular zone (DSZ). We made small injections of biotinylated dextran amine (BDA) as an anterograde tracer in various parts of the DSZ, revealing three distinct principles of its cortical circuit organization. First, its intrinsic circuits extend mainly along the major axis of DSZ to organize multiple patches of interconnections. Second, the central and peripheral regions of DSZ produce differential patterns of intra-areal and corticocortical circuits. Third, the projection fields of DSZ encompass only selective regions of the second somatic (SII), posterior parietal (PPC), and primary motor (MI) cortices. These projection fields are at least partially separated from those of SI cutaneous areas. We hypothesize, based on these observations, that the cortical circuits of DSZ facilitate a modular integration of proprioceptive information along its major axis and disseminate this information to only selective parts of higher order somatic and MI cortices in parallel with cutaneous information.</AbstractText>
<CopyrightInformation>Copyright © 2013 Wiley Periodicals, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Uhnoh</ForeName>
<Initials>U</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurosurgery and Interdepartmental Neuroscience Program, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA. ukim@hmc.psu.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Taehee</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Comp Neurol</MedlineTA>
<NlmUniqueID>0406041</NlmUniqueID>
<ISSNLinking>0021-9967</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010835">Phytohemagglutinins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C076397">biotinylated dextran amine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C100156">leukoagglutinins, plants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6SO6U10H04</RegistryNumber>
<NameOfSubstance UI="D001710">Biotin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K3R6ZDH4DU</RegistryNumber>
<NameOfSubstance UI="D003911">Dextrans</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000344">Afferent Pathways</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000033">anatomy & histology</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000254">growth & development</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001710">Biotin</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000031">analogs & derivatives</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002540">Cerebral Cortex</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000033">anatomy & histology</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000254">growth & development</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003627">Data Interpretation, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003911">Dextrans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007150">Immunohistochemistry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009044">Motor Cortex</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010477">Perfusion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010835">Phytohemagglutinins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011434">Proprioception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D051381">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017207">Rats, Sprague-Dawley</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013003">Somatosensory Cortex</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000033">anatomy & histology</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000254">growth & development</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014738">Vibrissae</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000294">innervation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>10</Month>
<Day>9</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>12</Month>
<Day>5</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>1</Month>
<Day>4</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>1</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/cne.23300</ArticleId>
<ArticleId IdType="pubmed">23322443</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A49 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000A49 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23322443
   |texte=   Intra-areal and corticocortical circuits arising in the dysgranular zone of rat primary somatosensory cortex that processes deep somatic input.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23322443" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024