Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of bypass angles on extracardiac Fontan connections: a numerical study.

Identifieur interne : 000A45 ( PubMed/Corpus ); précédent : 000A44; suivant : 000A46

Influence of bypass angles on extracardiac Fontan connections: a numerical study.

Auteurs : Jinli Ding ; Youjun Liu ; Feng Wang

Source :

RBID : pubmed:23345174

English descriptors

Abstract

The extracardiac Fontan connection (EFC) is an effective treatment for congenital single ventricle heart defects. Numerous studies have sought to optimize the EFC design. However, the optimal design of EFC remains uncertain. This study aims to examine the influence of bypass angles between the inferior vena cava (IVC) and right pulmonary artery (RPA), and the angles between the IVC and superior vena cava (SVC), on hemodynamics. Furthermore, this study demonstrates a methodology for cardiovascular surgical planning. First, a three-dimensional anatomical geometry was reconstructed from the medical images of a patient with single ventricle heart defects. Second, based on haptic deformations, six computational models were virtually generated. Third, numerical simulations were conducted using computational fluid dynamics through the finite volume method. Finally, hemodynamic parameters were obtained and evaluated. The hemodynamic parameters, including the flow patterns, streamlines, and swirling flow, were obtained. Meanwhile, the energy loss and flow distributions of vena cava blood were calculated. First, the hepatic artery blood distribution to two lungs and the flow ratio of the left pulmonary artery to RPA are sensitive to the angle between the IVC and RPA and not to that between the IVC and SVC. Second, energy dissipation is mainly sensitive to the angle between the IVC and SVC and not to that between the IVC and RPA. Third, an appropriate increase in the angle between the IVC and RPA or that between the IVC and SVC may lead to optimal options. This study is useful for surgeons in evaluating optimal Fontan options.

DOI: 10.1002/cnm.2508
PubMed: 23345174

Links to Exploration step

pubmed:23345174

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Influence of bypass angles on extracardiac Fontan connections: a numerical study.</title>
<author>
<name sortKey="Ding, Jinli" sort="Ding, Jinli" uniqKey="Ding J" first="Jinli" last="Ding">Jinli Ding</name>
<affiliation>
<nlm:affiliation>College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R., China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Youjun" sort="Liu, Youjun" uniqKey="Liu Y" first="Youjun" last="Liu">Youjun Liu</name>
</author>
<author>
<name sortKey="Wang, Feng" sort="Wang, Feng" uniqKey="Wang F" first="Feng" last="Wang">Feng Wang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.1002/cnm.2508</idno>
<idno type="RBID">pubmed:23345174</idno>
<idno type="pmid">23345174</idno>
<idno type="wicri:Area/PubMed/Corpus">000A45</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Influence of bypass angles on extracardiac Fontan connections: a numerical study.</title>
<author>
<name sortKey="Ding, Jinli" sort="Ding, Jinli" uniqKey="Ding J" first="Jinli" last="Ding">Jinli Ding</name>
<affiliation>
<nlm:affiliation>College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R., China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Youjun" sort="Liu, Youjun" uniqKey="Liu Y" first="Youjun" last="Liu">Youjun Liu</name>
</author>
<author>
<name sortKey="Wang, Feng" sort="Wang, Feng" uniqKey="Wang F" first="Feng" last="Wang">Feng Wang</name>
</author>
</analytic>
<series>
<title level="j">International journal for numerical methods in biomedical engineering</title>
<idno type="eISSN">2040-7947</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomechanical Phenomena (physiology)</term>
<term>Child</term>
<term>Computer Simulation</term>
<term>Fontan Procedure</term>
<term>Heart Defects, Congenital (physiopathology)</term>
<term>Heart Defects, Congenital (surgery)</term>
<term>Heart Valve Diseases (physiopathology)</term>
<term>Heart Valve Diseases (surgery)</term>
<term>Hemodynamics (physiology)</term>
<term>Humans</term>
<term>Imaging, Three-Dimensional</term>
<term>Male</term>
<term>Models, Cardiovascular</term>
<term>Pulmonary Artery (surgery)</term>
<term>Tomography, X-Ray Computed</term>
<term>Venae Cavae (surgery)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Hemodynamics</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Heart Defects, Congenital</term>
<term>Heart Valve Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="surgery" xml:lang="en">
<term>Heart Defects, Congenital</term>
<term>Heart Valve Diseases</term>
<term>Pulmonary Artery</term>
<term>Venae Cavae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Child</term>
<term>Computer Simulation</term>
<term>Fontan Procedure</term>
<term>Humans</term>
<term>Imaging, Three-Dimensional</term>
<term>Male</term>
<term>Models, Cardiovascular</term>
<term>Tomography, X-Ray Computed</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The extracardiac Fontan connection (EFC) is an effective treatment for congenital single ventricle heart defects. Numerous studies have sought to optimize the EFC design. However, the optimal design of EFC remains uncertain. This study aims to examine the influence of bypass angles between the inferior vena cava (IVC) and right pulmonary artery (RPA), and the angles between the IVC and superior vena cava (SVC), on hemodynamics. Furthermore, this study demonstrates a methodology for cardiovascular surgical planning. First, a three-dimensional anatomical geometry was reconstructed from the medical images of a patient with single ventricle heart defects. Second, based on haptic deformations, six computational models were virtually generated. Third, numerical simulations were conducted using computational fluid dynamics through the finite volume method. Finally, hemodynamic parameters were obtained and evaluated. The hemodynamic parameters, including the flow patterns, streamlines, and swirling flow, were obtained. Meanwhile, the energy loss and flow distributions of vena cava blood were calculated. First, the hepatic artery blood distribution to two lungs and the flow ratio of the left pulmonary artery to RPA are sensitive to the angle between the IVC and RPA and not to that between the IVC and SVC. Second, energy dissipation is mainly sensitive to the angle between the IVC and SVC and not to that between the IVC and RPA. Third, an appropriate increase in the angle between the IVC and RPA or that between the IVC and SVC may lead to optimal options. This study is useful for surgeons in evaluating optimal Fontan options.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23345174</PMID>
<DateCreated>
<Year>2013</Year>
<Month>03</Month>
<Day>01</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>08</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>05</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2040-7947</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2013</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>International journal for numerical methods in biomedical engineering</Title>
<ISOAbbreviation>Int J Numer Method Biomed Eng</ISOAbbreviation>
</Journal>
<ArticleTitle>Influence of bypass angles on extracardiac Fontan connections: a numerical study.</ArticleTitle>
<Pagination>
<MedlinePgn>351-62</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/cnm.2508</ELocationID>
<Abstract>
<AbstractText>The extracardiac Fontan connection (EFC) is an effective treatment for congenital single ventricle heart defects. Numerous studies have sought to optimize the EFC design. However, the optimal design of EFC remains uncertain. This study aims to examine the influence of bypass angles between the inferior vena cava (IVC) and right pulmonary artery (RPA), and the angles between the IVC and superior vena cava (SVC), on hemodynamics. Furthermore, this study demonstrates a methodology for cardiovascular surgical planning. First, a three-dimensional anatomical geometry was reconstructed from the medical images of a patient with single ventricle heart defects. Second, based on haptic deformations, six computational models were virtually generated. Third, numerical simulations were conducted using computational fluid dynamics through the finite volume method. Finally, hemodynamic parameters were obtained and evaluated. The hemodynamic parameters, including the flow patterns, streamlines, and swirling flow, were obtained. Meanwhile, the energy loss and flow distributions of vena cava blood were calculated. First, the hepatic artery blood distribution to two lungs and the flow ratio of the left pulmonary artery to RPA are sensitive to the angle between the IVC and RPA and not to that between the IVC and SVC. Second, energy dissipation is mainly sensitive to the angle between the IVC and SVC and not to that between the IVC and RPA. Third, an appropriate increase in the angle between the IVC and RPA or that between the IVC and SVC may lead to optimal options. This study is useful for surgeons in evaluating optimal Fontan options.</AbstractText>
<CopyrightInformation>Copyright © 2012 John Wiley & Sons, Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>Jinli</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R., China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Youjun</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Feng</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>08</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Int J Numer Method Biomed Eng</MedlineTA>
<NlmUniqueID>101530293</NlmUniqueID>
<ISSNLinking>2040-7939</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001696">Biomechanical Phenomena</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002648">Child</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D018729">Fontan Procedure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006330">Heart Defects, Congenital</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000503">physiopathology</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000601">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006349">Heart Valve Diseases</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000503">physiopathology</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000601">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006439">Hemodynamics</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D021621">Imaging, Three-Dimensional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D008955">Models, Cardiovascular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011651">Pulmonary Artery</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000601">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014057">Tomography, X-Ray Computed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014684">Venae Cavae</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000601">surgery</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>11</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>5</Month>
<Day>2</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>6</Month>
<Day>7</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2012</Year>
<Month>8</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>1</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/cnm.2508</ArticleId>
<ArticleId IdType="pubmed">23345174</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A45 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000A45 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23345174
   |texte=   Influence of bypass angles on extracardiac Fontan connections: a numerical study.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23345174" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024