Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

State dependence of adaptation of force output following movement observation.

Identifieur interne : 000943 ( PubMed/Corpus ); précédent : 000942; suivant : 000944

State dependence of adaptation of force output following movement observation.

Auteurs : Paul A. Wanda ; Gang Li ; Kurt A. Thoroughman

Source :

RBID : pubmed:23761698

English descriptors

Abstract

Humans readily learn to move through direct physical practice and by watching the movements of others. Some researchers have proposed that action observation can inform subsequent changes in control through the acquisition of a neural representation of the novel dynamics, but to date learning following observation has been described by kinematic metrics. Here we designed an experiment to consider the specificity of adaptation to novel dynamic perturbations at the level of force generation. We measured changes in temporal patterns of force output following either the performance or observation of movements perturbed by either position- or velocity-dependent dynamic environments to 1) establish whether previously described observational motor learning effects were attributable to changes in predictive limb control and 2) determine whether such adaptation reflected a learned dependence on limb states appropriate to the haptic environment. We found that subjects who observed perturbed movements produced significant compensatory changes in their lateral force output, despite never directly experiencing force perturbations firsthand while performing the motor task. The time series of observers' adapted force outputs suggested that the state dependence of observed dynamics shapes adaptation. We conclude that the brain can transform observation of kinematics into state-dependent adaptation of reach dynamics.

DOI: 10.1152/jn.00353.2012
PubMed: 23761698

Links to Exploration step

pubmed:23761698

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">State dependence of adaptation of force output following movement observation.</title>
<author>
<name sortKey="Wanda, Paul A" sort="Wanda, Paul A" uniqKey="Wanda P" first="Paul A" last="Wanda">Paul A. Wanda</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Gang" sort="Li, Gang" uniqKey="Li G" first="Gang" last="Li">Gang Li</name>
</author>
<author>
<name sortKey="Thoroughman, Kurt A" sort="Thoroughman, Kurt A" uniqKey="Thoroughman K" first="Kurt A" last="Thoroughman">Kurt A. Thoroughman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23761698</idno>
<idno type="pmid">23761698</idno>
<idno type="doi">10.1152/jn.00353.2012</idno>
<idno type="wicri:Area/PubMed/Corpus">000943</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">State dependence of adaptation of force output following movement observation.</title>
<author>
<name sortKey="Wanda, Paul A" sort="Wanda, Paul A" uniqKey="Wanda P" first="Paul A" last="Wanda">Paul A. Wanda</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Gang" sort="Li, Gang" uniqKey="Li G" first="Gang" last="Li">Gang Li</name>
</author>
<author>
<name sortKey="Thoroughman, Kurt A" sort="Thoroughman, Kurt A" uniqKey="Thoroughman K" first="Kurt A" last="Thoroughman">Kurt A. Thoroughman</name>
</author>
</analytic>
<series>
<title level="j">Journal of neurophysiology</title>
<idno type="eISSN">1522-1598</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Adolescent</term>
<term>Adult</term>
<term>Biomechanical Phenomena</term>
<term>Female</term>
<term>Humans</term>
<term>Learning (physiology)</term>
<term>Male</term>
<term>Movement</term>
<term>Psychomotor Performance (physiology)</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Learning</term>
<term>Psychomotor Performance</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Adolescent</term>
<term>Adult</term>
<term>Biomechanical Phenomena</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Movement</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Humans readily learn to move through direct physical practice and by watching the movements of others. Some researchers have proposed that action observation can inform subsequent changes in control through the acquisition of a neural representation of the novel dynamics, but to date learning following observation has been described by kinematic metrics. Here we designed an experiment to consider the specificity of adaptation to novel dynamic perturbations at the level of force generation. We measured changes in temporal patterns of force output following either the performance or observation of movements perturbed by either position- or velocity-dependent dynamic environments to 1) establish whether previously described observational motor learning effects were attributable to changes in predictive limb control and 2) determine whether such adaptation reflected a learned dependence on limb states appropriate to the haptic environment. We found that subjects who observed perturbed movements produced significant compensatory changes in their lateral force output, despite never directly experiencing force perturbations firsthand while performing the motor task. The time series of observers' adapted force outputs suggested that the state dependence of observed dynamics shapes adaptation. We conclude that the brain can transform observation of kinematics into state-dependent adaptation of reach dynamics.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23761698</PMID>
<DateCreated>
<Year>2013</Year>
<Month>09</Month>
<Day>02</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>03</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>04</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1598</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>110</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2013</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Journal of neurophysiology</Title>
<ISOAbbreviation>J. Neurophysiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>State dependence of adaptation of force output following movement observation.</ArticleTitle>
<Pagination>
<MedlinePgn>1246-56</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/jn.00353.2012</ELocationID>
<Abstract>
<AbstractText>Humans readily learn to move through direct physical practice and by watching the movements of others. Some researchers have proposed that action observation can inform subsequent changes in control through the acquisition of a neural representation of the novel dynamics, but to date learning following observation has been described by kinematic metrics. Here we designed an experiment to consider the specificity of adaptation to novel dynamic perturbations at the level of force generation. We measured changes in temporal patterns of force output following either the performance or observation of movements perturbed by either position- or velocity-dependent dynamic environments to 1) establish whether previously described observational motor learning effects were attributable to changes in predictive limb control and 2) determine whether such adaptation reflected a learned dependence on limb states appropriate to the haptic environment. We found that subjects who observed perturbed movements produced significant compensatory changes in their lateral force output, despite never directly experiencing force perturbations firsthand while performing the motor task. The time series of observers' adapted force outputs suggested that the state dependence of observed dynamics shapes adaptation. We conclude that the brain can transform observation of kinematics into state-dependent adaptation of reach dynamics.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wanda</LastName>
<ForeName>Paul A</ForeName>
<Initials>PA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Gang</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thoroughman</LastName>
<ForeName>Kurt A</ForeName>
<Initials>KA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HD-055851</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>06</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurophysiol</MedlineTA>
<NlmUniqueID>0375404</NlmUniqueID>
<ISSNLinking>0022-3077</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1996 Apr;119 ( Pt 2):593-609</RefSource>
<PMID Version="1">8800951</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1995 Jun;73(6):2608-11</RefSource>
<PMID Version="1">7666169</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1997 Jul;78(1):554-60</RefSource>
<PMID Version="1">9242306</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1999 Oct 1;19(19):8573-88</RefSource>
<PMID Version="1">10493757</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 1999 Nov;2(11):1026-31</RefSource>
<PMID Version="1">10526344</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurorehabil Neural Repair. 2005 Mar;19(1):4-13</RefSource>
<PMID Version="1">15673838</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2005 Apr 7;46(1):153-60</RefSource>
<PMID Version="1">15820701</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2005 Jun;93(6):3200-13</RefSource>
<PMID Version="1">15659526</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2005 Sep 28;25(39):8948-53</RefSource>
<PMID Version="1">16192385</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2005 Oct 12;25(41):9339-46</RefSource>
<PMID Version="1">16221842</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2005 Oct 26;25(43):9919-31</RefSource>
<PMID Version="1">16251440</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2006 Jan;168(3):368-83</RefSource>
<PMID Version="1">16249912</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2006 Mar;169(4):496-506</RefSource>
<PMID Version="1">16292640</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2006 Jun;4(6):e179</RefSource>
<PMID Version="1">16700627</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2006 Aug;173(3):425-37</RefSource>
<PMID Version="1">16506003</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2007;36 Suppl 2:T164-73</RefSource>
<PMID Version="1">17499164</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2007 Jun;97(6):4258-70</RefSource>
<PMID Version="1">17392416</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Nov 28;27(48):13241-50</RefSource>
<PMID Version="1">18045918</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Oct 15;28(42):10663-73</RefSource>
<PMID Version="1">18923042</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Lang. 2009 Jan;108(1):10-21</RefSource>
<PMID Version="1">18082250</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2009 May;21(5):1013-22</RefSource>
<PMID Version="1">18702578</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2009 Nov 25;64(4):575-89</RefSource>
<PMID Version="1">19945398</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2010 Jan;48(1):60-7</RefSource>
<PMID Version="1">19695273</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2010 Jan;31(2):386-98</RefSource>
<PMID Version="1">20074212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2010 Jul;22(7):1493-503</RefSource>
<PMID Version="1">19580392</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurorehabil Neural Repair. 2010 Jun;24(5):404-12</RefSource>
<PMID Version="1">20207851</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 2010;33:89-108</RefSource>
<PMID Version="1">20367317</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2010 Sep;205(3):325-34</RefSource>
<PMID Version="1">20652689</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2010 Sep;104(3):1409-16</RefSource>
<PMID Version="1">20631214</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2010 Dec;104(6):3053-63</RefSource>
<PMID Version="1">20861427</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2010 Apr 27;20(8):750-6</RefSource>
<PMID Version="1">20381353</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1999 Nov;82(5):2676-92</RefSource>
<PMID Version="1">10561437</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 1999 Dec;9(6):718-27</RefSource>
<PMID Version="1">10607637</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 1999;123:133-42</RefSource>
<PMID Version="1">10635710</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2000 Aug;84(2):853-62</RefSource>
<PMID Version="1">10938312</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2000 Oct;84(4):2175-80</RefSource>
<PMID Version="1">11024106</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2000 Oct 12;407(6805):742-7</RefSource>
<PMID Version="1">11048720</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2002 Feb 1;22(3):1108-13</RefSource>
<PMID Version="1">11826139</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 Aug 6;23(18):6982-92</RefSource>
<PMID Version="1">12904459</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 Oct 8;23(27):9032-45</RefSource>
<PMID Version="1">14534237</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2003 Nov;1(2):E25</RefSource>
<PMID Version="1">14624237</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 1971 Mar;9(1):97-113</RefSource>
<PMID Version="1">5146491</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1994 May;14(5 Pt 2):3208-24</RefSource>
<PMID Version="1">8182467</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1994 Jul;72(1):299-313</RefSource>
<PMID Version="1">7965013</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 1994 Nov-Dec;4(6):590-600</RefSource>
<PMID Version="1">7703686</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1995 Jan;73(1):361-72</RefSource>
<PMID Version="1">7714578</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Cogn Brain Res. 1996 Mar;3(2):131-41</RefSource>
<PMID Version="1">8713554</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D000222">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000293">Adolescent</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001696">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007858">Learning</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D009068">Movement</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011597">Psychomotor Performance</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055815">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3763093</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">action observation</Keyword>
<Keyword MajorTopicYN="N">force channels</Keyword>
<Keyword MajorTopicYN="N">haptic environments</Keyword>
<Keyword MajorTopicYN="N">human motor adaptation</Keyword>
<Keyword MajorTopicYN="N">motor control</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>6</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>3</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23761698</ArticleId>
<ArticleId IdType="pii">jn.00353.2012</ArticleId>
<ArticleId IdType="doi">10.1152/jn.00353.2012</ArticleId>
<ArticleId IdType="pmc">PMC3763093</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000943 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000943 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23761698
   |texte=   State dependence of adaptation of force output following movement observation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23761698" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024