Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

Identifieur interne : 000920 ( PubMed/Corpus ); précédent : 000919; suivant : 000921

Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

Auteurs : Georg F. Meyer ; Fei Shao ; Mark D. White ; Carl Hopkins ; Antony J. Robotham

Source :

RBID : pubmed:23840760

English descriptors

Abstract

Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

DOI: 10.1371/journal.pone.0067651
PubMed: 23840760

Links to Exploration step

pubmed:23840760

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.</title>
<author>
<name sortKey="Meyer, Georg F" sort="Meyer, Georg F" uniqKey="Meyer G" first="Georg F" last="Meyer">Georg F. Meyer</name>
<affiliation>
<nlm:affiliation>Department of Experimental Psychology, Liverpool University, Liverpool, United Kingdom. georg@liv.ac.uk</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shao, Fei" sort="Shao, Fei" uniqKey="Shao F" first="Fei" last="Shao">Fei Shao</name>
</author>
<author>
<name sortKey="White, Mark D" sort="White, Mark D" uniqKey="White M" first="Mark D" last="White">Mark D. White</name>
</author>
<author>
<name sortKey="Hopkins, Carl" sort="Hopkins, Carl" uniqKey="Hopkins C" first="Carl" last="Hopkins">Carl Hopkins</name>
</author>
<author>
<name sortKey="Robotham, Antony J" sort="Robotham, Antony J" uniqKey="Robotham A" first="Antony J" last="Robotham">Antony J. Robotham</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.1371/journal.pone.0067651</idno>
<idno type="RBID">pubmed:23840760</idno>
<idno type="pmid">23840760</idno>
<idno type="wicri:Area/PubMed/Corpus">000920</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.</title>
<author>
<name sortKey="Meyer, Georg F" sort="Meyer, Georg F" uniqKey="Meyer G" first="Georg F" last="Meyer">Georg F. Meyer</name>
<affiliation>
<nlm:affiliation>Department of Experimental Psychology, Liverpool University, Liverpool, United Kingdom. georg@liv.ac.uk</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shao, Fei" sort="Shao, Fei" uniqKey="Shao F" first="Fei" last="Shao">Fei Shao</name>
</author>
<author>
<name sortKey="White, Mark D" sort="White, Mark D" uniqKey="White M" first="Mark D" last="White">Mark D. White</name>
</author>
<author>
<name sortKey="Hopkins, Carl" sort="Hopkins, Carl" uniqKey="Hopkins C" first="Carl" last="Hopkins">Carl Hopkins</name>
</author>
<author>
<name sortKey="Robotham, Antony J" sort="Robotham, Antony J" uniqKey="Robotham A" first="Antony J" last="Robotham">Antony J. Robotham</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adolescent</term>
<term>Adult</term>
<term>Environment</term>
<term>Evoked Potentials, Visual (physiology)</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Motion Perception (physiology)</term>
<term>Orientation (physiology)</term>
<term>Photic Stimulation (methods)</term>
<term>Posture (physiology)</term>
<term>Psychomotor Performance (physiology)</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Photic Stimulation</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Evoked Potentials, Visual</term>
<term>Motion Perception</term>
<term>Orientation</term>
<term>Posture</term>
<term>Psychomotor Performance</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adolescent</term>
<term>Adult</term>
<term>Environment</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23840760</PMID>
<DateCreated>
<Year>2013</Year>
<Month>07</Month>
<Day>10</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>04</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.</ArticleTitle>
<Pagination>
<MedlinePgn>e67651</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0067651</ELocationID>
<Abstract>
<AbstractText>Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Meyer</LastName>
<ForeName>Georg F</ForeName>
<Initials>GF</Initials>
<AffiliationInfo>
<Affiliation>Department of Experimental Psychology, Liverpool University, Liverpool, United Kingdom. georg@liv.ac.uk</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shao</LastName>
<ForeName>Fei</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>White</LastName>
<ForeName>Mark D</ForeName>
<Initials>MD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hopkins</LastName>
<ForeName>Carl</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Robotham</LastName>
<ForeName>Antony J</ForeName>
<Initials>AJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>06</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2000 Mar 10;281(2-3):99-102</RefSource>
<PMID Version="1">10704752</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(9):e44381</RefSource>
<PMID Version="1">22957068</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2001 Aug 8;12(11):2557-60</RefSource>
<PMID Version="1">11496148</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2002 Nov;147(1):71-9</RefSource>
<PMID Version="1">12373371</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2002 Dec;147(4):558-60</RefSource>
<PMID Version="1">12444489</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Factors. 2002 Fall;44(3):451-65</RefSource>
<PMID Version="1">12502162</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Aviat Space Environ Med. 2003 Jun;74(6 Pt 1):622-5</RefSource>
<PMID Version="1">12793532</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Phys Med Rehabil. 2003 Oct;84(10):1560-3</RefSource>
<PMID Version="1">14586927</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 1973;2(3):287-94</RefSource>
<PMID Version="1">4546578</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Acoust Soc Am. 1974 Dec;56(6):1829-34</RefSource>
<PMID Version="1">4443482</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Agressologie. 1976;17(C Spec No):15-24</RefSource>
<PMID Version="1">1008137</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1977 Jun 27;28(3-4):363-84</RefSource>
<PMID Version="1">885185</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 1979;50:197-209</RefSource>
<PMID Version="1">551426</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Otolaryngol. 1980 May-Jun;89(5-6):534-40</RefSource>
<PMID Version="1">6969517</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Mot Skills. 1980 Dec;51(3 Pt 1):903-12</RefSource>
<PMID Version="1">7208238</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Appl Physiol Occup Physiol. 1982;49(2):169-77</RefSource>
<PMID Version="1">6981506</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1984 Dec;107 ( Pt 4):1143-63</RefSource>
<PMID Version="1">6509312</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1986;63(3):655-8</RefSource>
<PMID Version="1">3489640</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1987 Oct;7(10):3215-29</RefSource>
<PMID Version="1">3668625</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Cybern. 1994;71(6):489-501</RefSource>
<PMID Version="1">7999875</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1994;100(1):93-106</RefSource>
<PMID Version="1">7813657</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1995;105(1):101-10</RefSource>
<PMID Version="1">7589307</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1996 May;75(5):1843-57</RefSource>
<PMID Version="1">8734584</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1997 Feb;113(2):243-8</RefSource>
<PMID Version="1">9063710</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1998 Feb;118(4):541-50</RefSource>
<PMID Version="1">9504849</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Bull. 2005 Jan 30;64(6):487-92</RefSource>
<PMID Version="1">15639544</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Otolaryngol. 2005 Mar;125(3):280-5</RefSource>
<PMID Version="1">15966698</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2005 Oct;166(3-4):538-47</RefSource>
<PMID Version="1">16143858</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2005 Dec;167(4):535-56</RefSource>
<PMID Version="1">16132969</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2005 Dec;52(12):2108-11</RefSource>
<PMID Version="1">16366234</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gait Posture. 2007 Jan;25(1):49-55</RefSource>
<PMID Version="1">16464594</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2008 Sep 26;443(1):12-6</RefSource>
<PMID Version="1">18672020</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ergonomics. 2009 Feb;52(2):187-203</RefSource>
<PMID Version="1">18937109</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2010 Feb;103(2):1048-56</RefSource>
<PMID Version="1">20032237</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biometrika. 1947;34(1-2):28-35</RefSource>
<PMID Version="1">20287819</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2010;10(14):16</RefSource>
<PMID Version="1">21163957</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2011 Sep;23(9):2291-308</RefSource>
<PMID Version="1">20954938</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Vis Comput Graph. 2012 Apr;18(4):597-606</RefSource>
<PMID Version="1">22402687</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mot Behav. 2012;44(2):125-31</RefSource>
<PMID Version="1">22424204</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 2001 Jan;63(1):47-58</RefSource>
<PMID Version="1">11304016</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000293">Adolescent</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004777">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005074">Evoked Potentials, Visual</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008875">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009039">Motion Perception</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009949">Orientation</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010775">Photic Stimulation</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011187">Posture</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011597">Psychomotor Performance</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055815">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3695920</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="ppublish">
<Year>2013</Year>
<Month></Month>
<Day></Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>2</Month>
<Day>5</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>5</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2013</Year>
<Month>6</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.pone.0067651</ArticleId>
<ArticleId IdType="pii">PONE-D-13-05644</ArticleId>
<ArticleId IdType="pubmed">23840760</ArticleId>
<ArticleId IdType="pmc">PMC3695920</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000920 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000920 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23840760
   |texte=   Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23840760" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024