Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Exploring the design space of haptic assistants: the assistance policy module.

Identifieur interne : 000648 ( PubMed/Corpus ); précédent : 000647; suivant : 000649

Exploring the design space of haptic assistants: the assistance policy module.

Auteurs : Carolina Passenberg ; Antonia Glaser ; Angelika Peer

Source :

RBID : pubmed:24808396

English descriptors

Abstract

Haptic assistants augment user commands to facilitate manipulation and to increase task performance. The strength of assistance, also referred to as assistance level, is one of the main design factors. While existing implementations mainly realize fixed assistance levels that are selected with respect to one design objective, we introduce an assistance policy module that dynamically changes assistance levels and can incorporate multiple performance measures. The design space of this assistance policy module is systematically analyzed and three design factors, 1) performance criteria, 2) performance reference, and 3) assistance policy, are identified. Different implementations of the assistance policy module are compared for a scenario involving guiding virtual fixtures. A single-user evaluation is used to illustrate the effect of the different implementations on the determined assistance levels, and a multi-user study allows for a statistical comparison of them. Results show that adaptive assistance policies can outperform constant assistance policies, switching assistance policies have advantages over continuously adapting policies, a multi-criteria performance measure should be favored if there is no single criterion that has an outstanding priority, and the selection of the performance reference is highly application dependent.

DOI: 10.1109/TOH.2013.34
PubMed: 24808396

Links to Exploration step

pubmed:24808396

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Exploring the design space of haptic assistants: the assistance policy module.</title>
<author>
<name sortKey="Passenberg, Carolina" sort="Passenberg, Carolina" uniqKey="Passenberg C" first="Carolina" last="Passenberg">Carolina Passenberg</name>
</author>
<author>
<name sortKey="Glaser, Antonia" sort="Glaser, Antonia" uniqKey="Glaser A" first="Antonia" last="Glaser">Antonia Glaser</name>
</author>
<author>
<name sortKey="Peer, Angelika" sort="Peer, Angelika" uniqKey="Peer A" first="Angelika" last="Peer">Angelika Peer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="????">
<PubDate>
<MedlineDate>2013 Oct-Dec</MedlineDate>
</PubDate>
</date>
<idno type="doi">10.1109/TOH.2013.34</idno>
<idno type="RBID">pubmed:24808396</idno>
<idno type="pmid">24808396</idno>
<idno type="wicri:Area/PubMed/Corpus">000648</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Exploring the design space of haptic assistants: the assistance policy module.</title>
<author>
<name sortKey="Passenberg, Carolina" sort="Passenberg, Carolina" uniqKey="Passenberg C" first="Carolina" last="Passenberg">Carolina Passenberg</name>
</author>
<author>
<name sortKey="Glaser, Antonia" sort="Glaser, Antonia" uniqKey="Glaser A" first="Antonia" last="Glaser">Antonia Glaser</name>
</author>
<author>
<name sortKey="Peer, Angelika" sort="Peer, Angelika" uniqKey="Peer A" first="Angelika" last="Peer">Angelika Peer</name>
</author>
</analytic>
<series>
<title level="j">IEEE transactions on haptics</title>
<idno type="eISSN">2329-4051</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Computer-Assisted Instruction (instrumentation)</term>
<term>Computer-Assisted Instruction (methods)</term>
<term>Equipment Design</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Task Performance and Analysis</term>
<term>Touch (physiology)</term>
<term>User-Computer Interface</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Computer-Assisted Instruction</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computer-Assisted Instruction</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Touch</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Equipment Design</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Task Performance and Analysis</term>
<term>User-Computer Interface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Haptic assistants augment user commands to facilitate manipulation and to increase task performance. The strength of assistance, also referred to as assistance level, is one of the main design factors. While existing implementations mainly realize fixed assistance levels that are selected with respect to one design objective, we introduce an assistance policy module that dynamically changes assistance levels and can incorporate multiple performance measures. The design space of this assistance policy module is systematically analyzed and three design factors, 1) performance criteria, 2) performance reference, and 3) assistance policy, are identified. Different implementations of the assistance policy module are compared for a scenario involving guiding virtual fixtures. A single-user evaluation is used to illustrate the effect of the different implementations on the determined assistance levels, and a multi-user study allows for a statistical comparison of them. Results show that adaptive assistance policies can outperform constant assistance policies, switching assistance policies have advantages over continuously adapting policies, a multi-criteria performance measure should be favored if there is no single criterion that has an outstanding priority, and the selection of the performance reference is highly application dependent.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">24808396</PMID>
<DateCreated>
<Year>2014</Year>
<Month>05</Month>
<Day>08</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>21</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">2329-4051</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>4</Issue>
<PubDate>
<MedlineDate>2013 Oct-Dec</MedlineDate>
</PubDate>
</JournalIssue>
<Title>IEEE transactions on haptics</Title>
<ISOAbbreviation>IEEE Trans Haptics</ISOAbbreviation>
</Journal>
<ArticleTitle>Exploring the design space of haptic assistants: the assistance policy module.</ArticleTitle>
<Pagination>
<MedlinePgn>440-52</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1109/TOH.2013.34</ELocationID>
<Abstract>
<AbstractText>Haptic assistants augment user commands to facilitate manipulation and to increase task performance. The strength of assistance, also referred to as assistance level, is one of the main design factors. While existing implementations mainly realize fixed assistance levels that are selected with respect to one design objective, we introduce an assistance policy module that dynamically changes assistance levels and can incorporate multiple performance measures. The design space of this assistance policy module is systematically analyzed and three design factors, 1) performance criteria, 2) performance reference, and 3) assistance policy, are identified. Different implementations of the assistance policy module are compared for a scenario involving guiding virtual fixtures. A single-user evaluation is used to illustrate the effect of the different implementations on the determined assistance levels, and a multi-user study allows for a statistical comparison of them. Results show that adaptive assistance policies can outperform constant assistance policies, switching assistance policies have advantages over continuously adapting policies, a multi-criteria performance measure should be favored if there is no single criterion that has an outstanding priority, and the selection of the performance reference is highly application dependent.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Passenberg</LastName>
<ForeName>Carolina</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Glaser</LastName>
<ForeName>Antonia</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Peer</LastName>
<ForeName>Angelika</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>IEEE Trans Haptics</MedlineTA>
<NlmUniqueID>101491191</NlmUniqueID>
<ISSNLinking>1939-1412</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003194">Computer-Assisted Instruction</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013647">Task Performance and Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014110">Touch</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014584">User-Computer Interface</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1109/TOH.2013.34</ArticleId>
<ArticleId IdType="pubmed">24808396</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000648 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000648 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24808396
   |texte=   Exploring the design space of haptic assistants: the assistance policy module.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24808396" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024