Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spatial imagery in haptic shape perception.

Identifieur interne : 000599 ( PubMed/Corpus ); précédent : 000598; suivant : 000600

Spatial imagery in haptic shape perception.

Auteurs : Simon Lacey ; Randall Stilla ; Karthik Sreenivasan ; Gopikrishna Deshpande ; K. Sathian

Source :

RBID : pubmed:25017050

English descriptors

Abstract

We have proposed that haptic activation of the shape-selective lateral occipital complex (LOC) reflects a model of multisensory object representation in which the role of visual imagery is modulated by object familiarity. Supporting this, a previous functional magnetic resonance imaging (fMRI) study from our laboratory used inter-task correlations of blood oxygenation level-dependent (BOLD) signal magnitude and effective connectivity (EC) patterns based on the BOLD signals to show that the neural processes underlying visual object imagery (objIMG) are more similar to those mediating haptic perception of familiar (fHS) than unfamiliar (uHS) shapes. Here we employed fMRI to test a further hypothesis derived from our model, that spatial imagery (spIMG) would evoke activation and effective connectivity patterns more related to uHS than fHS. We found that few of the regions conjointly activated by spIMG and either fHS or uHS showed inter-task correlations of BOLD signal magnitudes, with parietal foci featuring in both sets of correlations. This may indicate some involvement of spIMG in HS regardless of object familiarity, contrary to our hypothesis, although we cannot rule out alternative explanations for the commonalities between the networks, such as generic imagery or spatial processes. EC analyses, based on inferred neuronal time series obtained by deconvolution of the hemodynamic response function from the measured BOLD time series, showed that spIMG shared more common paths with uHS than fHS. Re-analysis of our previous data, using the same EC methods as those used here, showed that, by contrast, objIMG shared more common paths with fHS than uHS. Thus, although our model requires some refinement, its basic architecture is supported: a stronger relationship between spIMG and uHS compared to fHS, and a stronger relationship between objIMG and fHS compared to uHS.

DOI: 10.1016/j.neuropsychologia.2014.05.008
PubMed: 25017050

Links to Exploration step

pubmed:25017050

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Spatial imagery in haptic shape perception.</title>
<author>
<name sortKey="Lacey, Simon" sort="Lacey, Simon" uniqKey="Lacey S" first="Simon" last="Lacey">Simon Lacey</name>
<affiliation>
<nlm:affiliation>Department of Neurology, Emory University, Atlanta, GA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stilla, Randall" sort="Stilla, Randall" uniqKey="Stilla R" first="Randall" last="Stilla">Randall Stilla</name>
<affiliation>
<nlm:affiliation>Department of Neurology, Emory University, Atlanta, GA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sreenivasan, Karthik" sort="Sreenivasan, Karthik" uniqKey="Sreenivasan K" first="Karthik" last="Sreenivasan">Karthik Sreenivasan</name>
<affiliation>
<nlm:affiliation>AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deshpande, Gopikrishna" sort="Deshpande, Gopikrishna" uniqKey="Deshpande G" first="Gopikrishna" last="Deshpande">Gopikrishna Deshpande</name>
<affiliation>
<nlm:affiliation>AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL, USA; Department of Psychology, Auburn University, Auburn, AL, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sathian, K" sort="Sathian, K" uniqKey="Sathian K" first="K" last="Sathian">K. Sathian</name>
<affiliation>
<nlm:affiliation>Department of Neurology, Emory University, Atlanta, GA, USA; Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA; Department of Psychology, Emory University, Atlanta, GA, USA; Rehabilitation R&D Center of Excellence, Atlanta VAMC, Decatur, GA, USA. Electronic address: krish.sathian@emory.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25017050</idno>
<idno type="pmid">25017050</idno>
<idno type="doi">10.1016/j.neuropsychologia.2014.05.008</idno>
<idno type="wicri:Area/PubMed/Corpus">000599</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Spatial imagery in haptic shape perception.</title>
<author>
<name sortKey="Lacey, Simon" sort="Lacey, Simon" uniqKey="Lacey S" first="Simon" last="Lacey">Simon Lacey</name>
<affiliation>
<nlm:affiliation>Department of Neurology, Emory University, Atlanta, GA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stilla, Randall" sort="Stilla, Randall" uniqKey="Stilla R" first="Randall" last="Stilla">Randall Stilla</name>
<affiliation>
<nlm:affiliation>Department of Neurology, Emory University, Atlanta, GA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sreenivasan, Karthik" sort="Sreenivasan, Karthik" uniqKey="Sreenivasan K" first="Karthik" last="Sreenivasan">Karthik Sreenivasan</name>
<affiliation>
<nlm:affiliation>AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deshpande, Gopikrishna" sort="Deshpande, Gopikrishna" uniqKey="Deshpande G" first="Gopikrishna" last="Deshpande">Gopikrishna Deshpande</name>
<affiliation>
<nlm:affiliation>AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL, USA; Department of Psychology, Auburn University, Auburn, AL, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sathian, K" sort="Sathian, K" uniqKey="Sathian K" first="K" last="Sathian">K. Sathian</name>
<affiliation>
<nlm:affiliation>Department of Neurology, Emory University, Atlanta, GA, USA; Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA; Department of Psychology, Emory University, Atlanta, GA, USA; Rehabilitation R&D Center of Excellence, Atlanta VAMC, Decatur, GA, USA. Electronic address: krish.sathian@emory.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Neuropsychologia</title>
<idno type="eISSN">1873-3514</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Brain (physiology)</term>
<term>Brain Mapping</term>
<term>Female</term>
<term>Humans</term>
<term>Imagination (physiology)</term>
<term>Magnetic Resonance Imaging</term>
<term>Male</term>
<term>Nerve Net (physiology)</term>
<term>Recognition (Psychology) (physiology)</term>
<term>Space Perception (physiology)</term>
<term>Touch Perception (physiology)</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Brain</term>
<term>Imagination</term>
<term>Nerve Net</term>
<term>Recognition (Psychology)</term>
<term>Space Perception</term>
<term>Touch Perception</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Brain Mapping</term>
<term>Female</term>
<term>Humans</term>
<term>Magnetic Resonance Imaging</term>
<term>Male</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have proposed that haptic activation of the shape-selective lateral occipital complex (LOC) reflects a model of multisensory object representation in which the role of visual imagery is modulated by object familiarity. Supporting this, a previous functional magnetic resonance imaging (fMRI) study from our laboratory used inter-task correlations of blood oxygenation level-dependent (BOLD) signal magnitude and effective connectivity (EC) patterns based on the BOLD signals to show that the neural processes underlying visual object imagery (objIMG) are more similar to those mediating haptic perception of familiar (fHS) than unfamiliar (uHS) shapes. Here we employed fMRI to test a further hypothesis derived from our model, that spatial imagery (spIMG) would evoke activation and effective connectivity patterns more related to uHS than fHS. We found that few of the regions conjointly activated by spIMG and either fHS or uHS showed inter-task correlations of BOLD signal magnitudes, with parietal foci featuring in both sets of correlations. This may indicate some involvement of spIMG in HS regardless of object familiarity, contrary to our hypothesis, although we cannot rule out alternative explanations for the commonalities between the networks, such as generic imagery or spatial processes. EC analyses, based on inferred neuronal time series obtained by deconvolution of the hemodynamic response function from the measured BOLD time series, showed that spIMG shared more common paths with uHS than fHS. Re-analysis of our previous data, using the same EC methods as those used here, showed that, by contrast, objIMG shared more common paths with fHS than uHS. Thus, although our model requires some refinement, its basic architecture is supported: a stronger relationship between spIMG and uHS compared to fHS, and a stronger relationship between objIMG and fHS compared to uHS.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">25017050</PMID>
<DateCreated>
<Year>2014</Year>
<Month>07</Month>
<Day>21</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>03</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>08</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-3514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>60</Volume>
<PubDate>
<Year>2014</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Neuropsychologia</Title>
<ISOAbbreviation>Neuropsychologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Spatial imagery in haptic shape perception.</ArticleTitle>
<Pagination>
<MedlinePgn>144-58</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.neuropsychologia.2014.05.008</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0028-3932(14)00156-0</ELocationID>
<Abstract>
<AbstractText>We have proposed that haptic activation of the shape-selective lateral occipital complex (LOC) reflects a model of multisensory object representation in which the role of visual imagery is modulated by object familiarity. Supporting this, a previous functional magnetic resonance imaging (fMRI) study from our laboratory used inter-task correlations of blood oxygenation level-dependent (BOLD) signal magnitude and effective connectivity (EC) patterns based on the BOLD signals to show that the neural processes underlying visual object imagery (objIMG) are more similar to those mediating haptic perception of familiar (fHS) than unfamiliar (uHS) shapes. Here we employed fMRI to test a further hypothesis derived from our model, that spatial imagery (spIMG) would evoke activation and effective connectivity patterns more related to uHS than fHS. We found that few of the regions conjointly activated by spIMG and either fHS or uHS showed inter-task correlations of BOLD signal magnitudes, with parietal foci featuring in both sets of correlations. This may indicate some involvement of spIMG in HS regardless of object familiarity, contrary to our hypothesis, although we cannot rule out alternative explanations for the commonalities between the networks, such as generic imagery or spatial processes. EC analyses, based on inferred neuronal time series obtained by deconvolution of the hemodynamic response function from the measured BOLD time series, showed that spIMG shared more common paths with uHS than fHS. Re-analysis of our previous data, using the same EC methods as those used here, showed that, by contrast, objIMG shared more common paths with fHS than uHS. Thus, although our model requires some refinement, its basic architecture is supported: a stronger relationship between spIMG and uHS compared to fHS, and a stronger relationship between objIMG and fHS compared to uHS.</AbstractText>
<CopyrightInformation>Copyright © 2014 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lacey</LastName>
<ForeName>Simon</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurology, Emory University, Atlanta, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stilla</LastName>
<ForeName>Randall</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurology, Emory University, Atlanta, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sreenivasan</LastName>
<ForeName>Karthik</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Deshpande</LastName>
<ForeName>Gopikrishna</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL, USA; Department of Psychology, Auburn University, Auburn, AL, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sathian</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurology, Emory University, Atlanta, GA, USA; Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA; Department of Psychology, Emory University, Atlanta, GA, USA; Rehabilitation R&D Center of Excellence, Atlanta VAMC, Decatur, GA, USA. Electronic address: krish.sathian@emory.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 EY012440</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY012440</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Neuropsychologia</MedlineTA>
<NlmUniqueID>0020713</NlmUniqueID>
<ISSNLinking>0028-3932</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2009 Feb 15;44(4):1369-79</RefSource>
<PMID Version="1">19059350</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2007 Jun;10(6):687-9</RefSource>
<PMID Version="1">17515898</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2009 Apr;30(4):1361-73</RefSource>
<PMID Version="1">18537116</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Topogr. 2009 May;21(3-4):269-74</RefSource>
<PMID Version="1">19330441</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 Feb 1;49(3):1991-2000</RefSource>
<PMID Version="1">19732841</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 Feb 1;49(3):1977-90</RefSource>
<PMID Version="1">19896540</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Restor Neurol Neurosci. 2010;28(2):271-81</RefSource>
<PMID Version="1">20404414</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 Sep;52(3):884-96</RefSource>
<PMID Version="1">20004248</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cereb Blood Flow Metab. 2010 Sep;30(9):1551-7</RefSource>
<PMID Version="1">20571517</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Jan 15;54(2):807-23</RefSource>
<PMID Version="1">20884354</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2011 Jun;49(7):1807-15</RefSource>
<PMID Version="1">21397616</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Jun 15;56(4):2109-28</RefSource>
<PMID Version="1">21396454</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Jul 15;57(2):462-75</RefSource>
<PMID Version="1">21575727</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 2011;191:165-76</RefSource>
<PMID Version="1">21741551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2011 Sep;213(2-3):267-73</RefSource>
<PMID Version="1">21424255</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2013 Mar 20;33(12):5387-98</RefSource>
<PMID Version="1">23516304</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013;8(7):e67428</RefSource>
<PMID Version="1">23861763</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013;8(7):e70141</RefSource>
<PMID Version="1">23922939</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2014 May;26(5):1154-67</RefSource>
<PMID Version="1">24345179</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2013 Feb 1;66:436-48</RefSource>
<PMID Version="1">23110880</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Cogn. 2000 Mar;42(2):183-200</RefSource>
<PMID Version="1">10744919</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2001 Mar;4(3):324-30</RefSource>
<PMID Version="1">11224551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2006 Apr;23(7):1919-30</RefSource>
<PMID Version="1">16623848</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2006 Apr;23(7):1910-8</RefSource>
<PMID Version="1">16623847</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Can J Exp Psychol. 2007 Sep;61(3):254-64</RefSource>
<PMID Version="1">17974319</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 2007;36(10):1513-21</RefSource>
<PMID Version="1">18265834</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2008 May 1;40(4):1807-14</RefSource>
<PMID Version="1">18329290</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Aug 20;28(34):8417-29</RefSource>
<PMID Version="1">18716200</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2008 Oct;29(10):1123-38</RefSource>
<PMID Version="1">17924535</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2008 Nov 19;19(17):1727-31</RefSource>
<PMID Version="1">18852681</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2008 Dec 23;6(12):2683-97</RefSource>
<PMID Version="1">19108604</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2001 Feb;11(2):114-21</RefSource>
<PMID Version="1">11208666</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2001 Apr;13(4):577-88</RefSource>
<PMID Version="1">11305887</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2001 Jul;14(1 Pt 1):129-39</RefSource>
<PMID Version="1">11525322</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2002;40(10):1706-14</RefSource>
<PMID Version="1">11992658</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2002 Nov;12(11):1202-12</RefSource>
<PMID Version="1">12379608</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Psychophysiol. 2003 Oct;50(1-2):41-9</RefSource>
<PMID Version="1">14511835</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2004 Apr;21(4):1639-51</RefSource>
<PMID Version="1">15050587</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5658-63</RefSource>
<PMID Version="1">15064396</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2004;42(8):1079-87</RefSource>
<PMID Version="1">15093147</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cogn Affect Behav Neurosci. 2004 Jun;4(2):251-9</RefSource>
<PMID Version="1">15460931</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2004 Nov;14(11):1256-65</RefSource>
<PMID Version="1">15192010</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 1974 Jan;12(1):43-7</RefSource>
<PMID Version="1">4821188</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 1990;85:119-46</RefSource>
<PMID Version="1">2094891</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1995 May;33(5):636-47</RefSource>
<PMID Version="1">7596267</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8135-9</RefSource>
<PMID Version="1">7667258</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1996 Oct 15;16(20):6504-12</RefSource>
<PMID Version="1">8815928</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 1997 Dec 22;8(18):3877-81</RefSource>
<PMID Version="1">9462459</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2005 Mar;25(1):230-42</RefSource>
<PMID Version="1">15734358</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Psychobiol. 2005 Apr;46(3):279-86</RefSource>
<PMID Version="1">15772968</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Cogn Brain Res. 2005 May;23(2-3):235-46</RefSource>
<PMID Version="1">15820631</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 2005;28:377-401</RefSource>
<PMID Version="1">16022601</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2005 Oct 15;28(1):216-26</RefSource>
<PMID Version="1">15979345</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2005 Oct;166(3-4):559-71</RefSource>
<PMID Version="1">16028028</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mem Cognit. 2005 Jun;33(4):710-26</RefSource>
<PMID Version="1">16248335</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2005 Dec 8;48(5):859-72</RefSource>
<PMID Version="1">16337922</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Imaging. 2006 Feb;24(2):181-5</RefSource>
<PMID Version="1">16455407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 2009 Apr 12;199(1):53-60</RefSource>
<PMID Version="1">19059285</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001921">Brain</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001931">Brain Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007092">Imagination</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008279">Magnetic Resonance Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009415">Nerve Net</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D021641">Recognition (Psychology)</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013028">Space Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055698">Touch Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055815">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS602926</OtherID>
<OtherID Source="NLM">PMC4122331</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Effective connectivity</Keyword>
<Keyword MajorTopicYN="N">Granger causality</Keyword>
<Keyword MajorTopicYN="N">Multisensory</Keyword>
<Keyword MajorTopicYN="N">Object familiarity</Keyword>
<Keyword MajorTopicYN="N">fMRI</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>3</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>4</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>5</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2014</Year>
<Month>6</Month>
<Day>2</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25017050</ArticleId>
<ArticleId IdType="pii">S0028-3932(14)00156-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.neuropsychologia.2014.05.008</ArticleId>
<ArticleId IdType="pmc">PMC4122331</ArticleId>
<ArticleId IdType="mid">NIHMS602926</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000599 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000599 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25017050
   |texte=   Spatial imagery in haptic shape perception.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25017050" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024