Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neural correlates associated with superior tactile symmetry perception in the early blind.

Identifieur interne : 000548 ( PubMed/Corpus ); précédent : 000547; suivant : 000549

Neural correlates associated with superior tactile symmetry perception in the early blind.

Auteurs : Corinna Bauer ; Lindsay Yazzolino ; Gabriella Hirsch ; Zaira Cattaneo ; Tomaso Vecchi ; Lotfi B. Merabet

Source :

RBID : pubmed:25243993

English descriptors

Abstract

Symmetry is an organizational principle that is ubiquitous throughout the visual world. However, this property can also be detected through non-visual modalities such as touch. The role of prior visual experience on detecting tactile patterns containing symmetry remains unclear. We compared the behavioral performance of early blind and sighted (blindfolded) controls on a tactile symmetry detection task. The tactile patterns used were similar in design and complexity as in previous visual perceptual studies. The neural correlates associated with this behavioral task were identified with functional magnetic resonance imaging (fMRI). In line with growing evidence demonstrating enhanced tactile processing abilities in the blind, we found that early blind individuals showed significantly superior performance in detecting tactile symmetric patterns compared to sighted controls. Furthermore, comparing patterns of activation between these two groups identified common areas of activation (e.g. superior parietal cortex) but key differences also emerged. In particular, tactile symmetry detection in the early blind was also associated with activation that included peri-calcarine cortex, lateral occipital (LO), and middle temporal (MT) cortex, as well as inferior temporal and fusiform cortex. These results contribute to the growing evidence supporting superior behavioral abilities in the blind, and the neural correlates associated with crossmodal neuroplasticity following visual deprivation.

DOI: 10.1016/j.cortex.2014.08.003
PubMed: 25243993

Links to Exploration step

pubmed:25243993

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Neural correlates associated with superior tactile symmetry perception in the early blind.</title>
<author>
<name sortKey="Bauer, Corinna" sort="Bauer, Corinna" uniqKey="Bauer C" first="Corinna" last="Bauer">Corinna Bauer</name>
<affiliation>
<nlm:affiliation>Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yazzolino, Lindsay" sort="Yazzolino, Lindsay" uniqKey="Yazzolino L" first="Lindsay" last="Yazzolino">Lindsay Yazzolino</name>
<affiliation>
<nlm:affiliation>Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hirsch, Gabriella" sort="Hirsch, Gabriella" uniqKey="Hirsch G" first="Gabriella" last="Hirsch">Gabriella Hirsch</name>
<affiliation>
<nlm:affiliation>Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cattaneo, Zaira" sort="Cattaneo, Zaira" uniqKey="Cattaneo Z" first="Zaira" last="Cattaneo">Zaira Cattaneo</name>
<affiliation>
<nlm:affiliation>Department of Psychology, University of Milano-Bicocca, Milano, Italy; Brain Connectivity Center, National Neurological Institute C. Mondino, Pavia, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vecchi, Tomaso" sort="Vecchi, Tomaso" uniqKey="Vecchi T" first="Tomaso" last="Vecchi">Tomaso Vecchi</name>
<affiliation>
<nlm:affiliation>Brain Connectivity Center, National Neurological Institute C. Mondino, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Merabet, Lotfi B" sort="Merabet, Lotfi B" uniqKey="Merabet L" first="Lotfi B" last="Merabet">Lotfi B. Merabet</name>
<affiliation>
<nlm:affiliation>Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA. Electronic address: lotfi_merabet@meei.harvard.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25243993</idno>
<idno type="pmid">25243993</idno>
<idno type="doi">10.1016/j.cortex.2014.08.003</idno>
<idno type="wicri:Area/PubMed/Corpus">000548</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Neural correlates associated with superior tactile symmetry perception in the early blind.</title>
<author>
<name sortKey="Bauer, Corinna" sort="Bauer, Corinna" uniqKey="Bauer C" first="Corinna" last="Bauer">Corinna Bauer</name>
<affiliation>
<nlm:affiliation>Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yazzolino, Lindsay" sort="Yazzolino, Lindsay" uniqKey="Yazzolino L" first="Lindsay" last="Yazzolino">Lindsay Yazzolino</name>
<affiliation>
<nlm:affiliation>Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hirsch, Gabriella" sort="Hirsch, Gabriella" uniqKey="Hirsch G" first="Gabriella" last="Hirsch">Gabriella Hirsch</name>
<affiliation>
<nlm:affiliation>Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cattaneo, Zaira" sort="Cattaneo, Zaira" uniqKey="Cattaneo Z" first="Zaira" last="Cattaneo">Zaira Cattaneo</name>
<affiliation>
<nlm:affiliation>Department of Psychology, University of Milano-Bicocca, Milano, Italy; Brain Connectivity Center, National Neurological Institute C. Mondino, Pavia, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vecchi, Tomaso" sort="Vecchi, Tomaso" uniqKey="Vecchi T" first="Tomaso" last="Vecchi">Tomaso Vecchi</name>
<affiliation>
<nlm:affiliation>Brain Connectivity Center, National Neurological Institute C. Mondino, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Merabet, Lotfi B" sort="Merabet, Lotfi B" uniqKey="Merabet L" first="Lotfi B" last="Merabet">Lotfi B. Merabet</name>
<affiliation>
<nlm:affiliation>Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA. Electronic address: lotfi_merabet@meei.harvard.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cortex; a journal devoted to the study of the nervous system and behavior</title>
<idno type="eISSN">1973-8102</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Blindness (physiopathology)</term>
<term>Brain (physiopathology)</term>
<term>Brain Mapping</term>
<term>Female</term>
<term>Form Perception (physiology)</term>
<term>Functional Laterality (physiology)</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Magnetic Resonance Imaging</term>
<term>Male</term>
<term>Touch (physiology)</term>
<term>Touch Perception (physiology)</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Form Perception</term>
<term>Functional Laterality</term>
<term>Touch</term>
<term>Touch Perception</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Blindness</term>
<term>Brain</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Brain Mapping</term>
<term>Female</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Magnetic Resonance Imaging</term>
<term>Male</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Symmetry is an organizational principle that is ubiquitous throughout the visual world. However, this property can also be detected through non-visual modalities such as touch. The role of prior visual experience on detecting tactile patterns containing symmetry remains unclear. We compared the behavioral performance of early blind and sighted (blindfolded) controls on a tactile symmetry detection task. The tactile patterns used were similar in design and complexity as in previous visual perceptual studies. The neural correlates associated with this behavioral task were identified with functional magnetic resonance imaging (fMRI). In line with growing evidence demonstrating enhanced tactile processing abilities in the blind, we found that early blind individuals showed significantly superior performance in detecting tactile symmetric patterns compared to sighted controls. Furthermore, comparing patterns of activation between these two groups identified common areas of activation (e.g. superior parietal cortex) but key differences also emerged. In particular, tactile symmetry detection in the early blind was also associated with activation that included peri-calcarine cortex, lateral occipital (LO), and middle temporal (MT) cortex, as well as inferior temporal and fusiform cortex. These results contribute to the growing evidence supporting superior behavioral abilities in the blind, and the neural correlates associated with crossmodal neuroplasticity following visual deprivation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">25243993</PMID>
<DateCreated>
<Year>2015</Year>
<Month>01</Month>
<Day>24</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>09</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>02</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1973-8102</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>63</Volume>
<PubDate>
<Year>2015</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Cortex; a journal devoted to the study of the nervous system and behavior</Title>
<ISOAbbreviation>Cortex</ISOAbbreviation>
</Journal>
<ArticleTitle>Neural correlates associated with superior tactile symmetry perception in the early blind.</ArticleTitle>
<Pagination>
<MedlinePgn>104-17</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.cortex.2014.08.003</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0010-9452(14)00256-1</ELocationID>
<Abstract>
<AbstractText>Symmetry is an organizational principle that is ubiquitous throughout the visual world. However, this property can also be detected through non-visual modalities such as touch. The role of prior visual experience on detecting tactile patterns containing symmetry remains unclear. We compared the behavioral performance of early blind and sighted (blindfolded) controls on a tactile symmetry detection task. The tactile patterns used were similar in design and complexity as in previous visual perceptual studies. The neural correlates associated with this behavioral task were identified with functional magnetic resonance imaging (fMRI). In line with growing evidence demonstrating enhanced tactile processing abilities in the blind, we found that early blind individuals showed significantly superior performance in detecting tactile symmetric patterns compared to sighted controls. Furthermore, comparing patterns of activation between these two groups identified common areas of activation (e.g. superior parietal cortex) but key differences also emerged. In particular, tactile symmetry detection in the early blind was also associated with activation that included peri-calcarine cortex, lateral occipital (LO), and middle temporal (MT) cortex, as well as inferior temporal and fusiform cortex. These results contribute to the growing evidence supporting superior behavioral abilities in the blind, and the neural correlates associated with crossmodal neuroplasticity following visual deprivation.</AbstractText>
<CopyrightInformation>Copyright © 2014 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bauer</LastName>
<ForeName>Corinna</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yazzolino</LastName>
<ForeName>Lindsay</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hirsch</LastName>
<ForeName>Gabriella</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cattaneo</LastName>
<ForeName>Zaira</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Psychology, University of Milano-Bicocca, Milano, Italy; Brain Connectivity Center, National Neurological Institute C. Mondino, Pavia, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vecchi</LastName>
<ForeName>Tomaso</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Brain Connectivity Center, National Neurological Institute C. Mondino, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Merabet</LastName>
<ForeName>Lotfi B</ForeName>
<Initials>LB</Initials>
<AffiliationInfo>
<Affiliation>Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA. Electronic address: lotfi_merabet@meei.harvard.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 EY019924</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GRANT EY019924</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Italy</Country>
<MedlineTA>Cortex</MedlineTA>
<NlmUniqueID>0100725</NlmUniqueID>
<ISSNLinking>0010-9452</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1994 Nov 10;372(6502):169-72</RefSource>
<PMID Version="1">7969448</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Spat Vis. 1995;9(1):33-55</RefSource>
<PMID Version="1">7626546</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Spat Vis. 1995;9(1):79-100</RefSource>
<PMID Version="1">7626548</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Spat Vis. 1995;9(1):9-32</RefSource>
<PMID Version="1">7626549</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8135-9</RefSource>
<PMID Version="1">7667258</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1996 Apr 11;380(6574):526-8</RefSource>
<PMID Version="1">8606771</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Somatosens Mot Res. 1996;13(1):1-10</RefSource>
<PMID Version="1">8725644</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1996 Feb;58(2):310-23</RefSource>
<PMID Version="1">8838173</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1997 Jan;59(1):37-50</RefSource>
<PMID Version="1">9038406</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1997 Jul;49(1):168-77</RefSource>
<PMID Version="1">9222186</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1997 Sep 11;389(6647):180-3</RefSource>
<PMID Version="1">9296495</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 1997 Oct;37(20):2915-30</RefSource>
<PMID Version="1">9415370</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1998 Mar;121 ( Pt 3):409-19</RefSource>
<PMID Version="1">9549517</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1998 Apr;60(3):389-404</RefSource>
<PMID Version="1">9599991</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 1998 Apr 22;265(1397):659-64</RefSource>
<PMID Version="1">9608727</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1998 Sep 17;395(6699):278-80</RefSource>
<PMID Version="1">9751055</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1999 Oct 7;401(6753):587-90</RefSource>
<PMID Version="1">10524625</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2005 Jan 15;24(2):306-14</RefSource>
<PMID Version="1">15627573</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3159-63</RefSource>
<PMID Version="1">15710884</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Atten Percept Psychophys. 2012 Jul;74(5):988-1000</RefSource>
<PMID Version="1">22419373</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neural Plast. 2012;2012:720278</RefSource>
<PMID Version="1">22792493</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Psychol (Amst). 2012 Sep;141(1):122-32</RefSource>
<PMID Version="1">22889674</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Atten Percept Psychophys. 2013 Feb;75(2):375-82</RefSource>
<PMID Version="1">23150215</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 2013 May 1;244:162-5</RefSource>
<PMID Version="1">23416237</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 2000 Feb;62(2):301-12</RefSource>
<PMID Version="1">10723209</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2000 Jun 27;54(12):2230-6</RefSource>
<PMID Version="1">10881245</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2001 Mar;4(3):324-30</RefSource>
<PMID Version="1">11224551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 2001;41(10-11):1409-22</RefSource>
<PMID Version="1">11322983</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Psychol (Amst). 2001 Apr;107(1-3):43-68</RefSource>
<PMID Version="1">11388142</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2002 Jan;87(1):589-607</RefSource>
<PMID Version="1">11784773</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2002;40(10):1706-14</RefSource>
<PMID Version="1">11992658</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychon Bull Rev. 2004 Oct;11(5):862-9</RefSource>
<PMID Version="1">15732695</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2005 Apr 15;25(3):718-26</RefSource>
<PMID Version="1">15808973</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2006 Apr 28;139(1):393-400</RefSource>
<PMID Version="1">16338091</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2006 Sep 18;17(13):1381-4</RefSource>
<PMID Version="1">16932143</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2006 Dec 22;273(1605):3093-9</RefSource>
<PMID Version="1">17015348</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2007 Feb 1;45(3):476-83</RefSource>
<PMID Version="1">16616940</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5658-63</RefSource>
<PMID Version="1">15064396</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cortex. 2014 Feb;51:46-55</RefSource>
<PMID Version="1">24360359</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Biobehav Rev. 2014 Apr;41:36-52</RefSource>
<PMID Version="1">23954750</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Sci. 2004 Jun;15(6):397-402</RefSource>
<PMID Version="1">15147493</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 2004;33(3):315-27</RefSource>
<PMID Version="1">15176616</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2004 Dec;23(4):210-28</RefSource>
<PMID Version="1">15449356</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cogn Affect Behav Neurosci. 2004 Jun;4(2):251-9</RefSource>
<PMID Version="1">15460931</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol. 1972 Apr;93(1):43-55</RefSource>
<PMID Version="1">5013340</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Mot Skills. 1977 Dec;45(3 Pt 2):1267-73</RefSource>
<PMID Version="1">604912</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1978 Feb;23(2):110-6</RefSource>
<PMID Version="1">643506</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 1981;10(3):255-64</RefSource>
<PMID Version="1">7329748</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 1989;18(1):121-33</RefSource>
<PMID Version="1">2771591</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 1989;18(3):379-89</RefSource>
<PMID Version="1">2798020</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1990 Jan;47(1):54-64</RefSource>
<PMID Version="1">2300424</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2007 Feb;97(2):1633-41</RefSource>
<PMID Version="1">17135476</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 May 16;27(20):5326-37</RefSource>
<PMID Version="1">17507555</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Oct 10;27(41):11091-102</RefSource>
<PMID Version="1">17928451</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2008 Oct;29(10):1123-38</RefSource>
<PMID Version="1">17924535</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 2008 Nov;70(8):1471-88</RefSource>
<PMID Version="1">19064491</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2008;8(10):13.1-19</RefSource>
<PMID Version="1">19146355</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2009 May;30(5):1615-25</RefSource>
<PMID Version="1">18671278</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Ital Biol. 2008 Sep;146(3-4):133-46</RefSource>
<PMID Version="1">19378878</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2009 Aug;47(10):2037-43</RefSource>
<PMID Version="1">19467354</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 Sep 2;29(35):10950-60</RefSource>
<PMID Version="1">19726653</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2009 Dec;47(14):3079-83</RefSource>
<PMID Version="1">19616019</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2010 Jan;11(1):44-52</RefSource>
<PMID Version="1">19935836</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2009;9(12):11.1-11</RefSource>
<PMID Version="1">20053102</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2010 Jan;48(2):631-5</RefSource>
<PMID Version="1">19819246</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cortex. 2010 Mar;46(3):282-97</RefSource>
<PMID Version="1">19540475</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Restor Neurol Neurosci. 2010;28(2):271-81</RefSource>
<PMID Version="1">20404414</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Psychol (Amst). 2010 Jul;134(3):398-402</RefSource>
<PMID Version="1">20444438</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2011 Jan 1;589(Pt 1):49-57</RefSource>
<PMID Version="1">20807786</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 May 11;31(19):7028-37</RefSource>
<PMID Version="1">21562264</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Atten Percept Psychophys. 2011 Oct;73(7):2323-31</RefSource>
<PMID Version="1">21671153</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2002 Sep;16(5):957-64</RefSource>
<PMID Version="1">12372032</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2002 Nov;12(11):1202-12</RefSource>
<PMID Version="1">12379608</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 Apr 15;23(8):3439-45</RefSource>
<PMID Version="1">12716952</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2004 Apr 8;42(1):173-9</RefSource>
<PMID Version="1">15066274</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 1991;20(2):167-77</RefSource>
<PMID Version="1">1745589</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 1992 Jan;15(1):20-5</RefSource>
<PMID Version="1">1374953</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1992 May 21;357(6375):238-40</RefSource>
<PMID Version="1">1589021</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001766">Blindness</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000503">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001921">Brain</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000503">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001931">Brain Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005556">Form Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007839">Functional Laterality</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007091">Image Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008279">Magnetic Resonance Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014110">Touch</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055698">Touch Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055815">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS630228</OtherID>
<OtherID Source="NLM">PMC4305477</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Blind</Keyword>
<Keyword MajorTopicYN="N">Crossmodal</Keyword>
<Keyword MajorTopicYN="N">Extrastriate cortex</Keyword>
<Keyword MajorTopicYN="N">Haptic</Keyword>
<Keyword MajorTopicYN="N">Lateral occipital cortex</Keyword>
<Keyword MajorTopicYN="N">Plasticity</Keyword>
<Keyword MajorTopicYN="N">Striate cortex</Keyword>
<Keyword MajorTopicYN="N">Symmetry</Keyword>
<Keyword MajorTopicYN="N">Tactile</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>2</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>5</Month>
<Day>7</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>8</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2014</Year>
<Month>8</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>9</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>9</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25243993</ArticleId>
<ArticleId IdType="pii">S0010-9452(14)00256-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.cortex.2014.08.003</ArticleId>
<ArticleId IdType="pmc">PMC4305477</ArticleId>
<ArticleId IdType="mid">NIHMS630228</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000548 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000548 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25243993
   |texte=   Neural correlates associated with superior tactile symmetry perception in the early blind.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25243993" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024