Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Time-interval for integration of stabilizing haptic and visual information in subjects balancing under static and dynamic conditions.

Identifieur interne : 000515 ( PubMed/Corpus ); précédent : 000514; suivant : 000516

Time-interval for integration of stabilizing haptic and visual information in subjects balancing under static and dynamic conditions.

Auteurs : Jean-Louis Honeine ; Marco Schieppati

Source :

RBID : pubmed:25339872

Abstract

Maintaining equilibrium is basically a sensorimotor integration task. The central nervous system (CNS) continually and selectively weights and rapidly integrates sensory inputs from multiple sources, and coordinates multiple outputs. The weighting process is based on the availability and accuracy of afferent signals at a given instant, on the time-period required to process each input, and possibly on the plasticity of the relevant pathways. The likelihood that sensory inflow changes while balancing under static or dynamic conditions is high, because subjects can pass from a dark to a well-lit environment or from a tactile-guided stabilization to loss of haptic inflow. This review article presents recent data on the temporal events accompanying sensory transition, on which basic information is fragmentary. The processing time from sensory shift to reaching a new steady state includes the time to (a) subtract or integrate sensory inputs; (b) move from allocentric to egocentric reference or vice versa; and (c) adjust the calibration of motor activity in time and amplitude to the new sensory set. We present examples of processes of integration of posture-stabilizing information, and of the respective sensorimotor time-intervals while allowing or occluding vision or adding or subtracting tactile information. These intervals are short, in the order of 1-2 s for different postural conditions, modalities and deliberate or passive shift. They are just longer for haptic than visual shift, just shorter on withdrawal than on addition of stabilizing input, and on deliberate than unexpected mode. The delays are the shortest (for haptic shift) in blind subjects. Since automatic balance stabilization may be vulnerable to sensory-integration delays and to interference from concurrent cognitive tasks in patients with sensorimotor problems, insight into the processing time for balance control represents a critical step in the design of new balance- and locomotion training devices.

DOI: 10.3389/fnsys.2014.00190
PubMed: 25339872

Links to Exploration step

pubmed:25339872

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Time-interval for integration of stabilizing haptic and visual information in subjects balancing under static and dynamic conditions.</title>
<author>
<name sortKey="Honeine, Jean Louis" sort="Honeine, Jean Louis" uniqKey="Honeine J" first="Jean-Louis" last="Honeine">Jean-Louis Honeine</name>
<affiliation>
<nlm:affiliation>Department of Public Health, Experimental and Forensic Medicine, University of Pavia Pavia, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schieppati, Marco" sort="Schieppati, Marco" uniqKey="Schieppati M" first="Marco" last="Schieppati">Marco Schieppati</name>
<affiliation>
<nlm:affiliation>Department of Public Health, Experimental and Forensic Medicine, University of Pavia Pavia, Italy ; Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Scientific Institute of Pavia Pavia, Italy.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="doi">10.3389/fnsys.2014.00190</idno>
<idno type="RBID">pubmed:25339872</idno>
<idno type="pmid">25339872</idno>
<idno type="wicri:Area/PubMed/Corpus">000515</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Time-interval for integration of stabilizing haptic and visual information in subjects balancing under static and dynamic conditions.</title>
<author>
<name sortKey="Honeine, Jean Louis" sort="Honeine, Jean Louis" uniqKey="Honeine J" first="Jean-Louis" last="Honeine">Jean-Louis Honeine</name>
<affiliation>
<nlm:affiliation>Department of Public Health, Experimental and Forensic Medicine, University of Pavia Pavia, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schieppati, Marco" sort="Schieppati, Marco" uniqKey="Schieppati M" first="Marco" last="Schieppati">Marco Schieppati</name>
<affiliation>
<nlm:affiliation>Department of Public Health, Experimental and Forensic Medicine, University of Pavia Pavia, Italy ; Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Scientific Institute of Pavia Pavia, Italy.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in systems neuroscience</title>
<idno type="eISSN">1662-5137</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Maintaining equilibrium is basically a sensorimotor integration task. The central nervous system (CNS) continually and selectively weights and rapidly integrates sensory inputs from multiple sources, and coordinates multiple outputs. The weighting process is based on the availability and accuracy of afferent signals at a given instant, on the time-period required to process each input, and possibly on the plasticity of the relevant pathways. The likelihood that sensory inflow changes while balancing under static or dynamic conditions is high, because subjects can pass from a dark to a well-lit environment or from a tactile-guided stabilization to loss of haptic inflow. This review article presents recent data on the temporal events accompanying sensory transition, on which basic information is fragmentary. The processing time from sensory shift to reaching a new steady state includes the time to (a) subtract or integrate sensory inputs; (b) move from allocentric to egocentric reference or vice versa; and (c) adjust the calibration of motor activity in time and amplitude to the new sensory set. We present examples of processes of integration of posture-stabilizing information, and of the respective sensorimotor time-intervals while allowing or occluding vision or adding or subtracting tactile information. These intervals are short, in the order of 1-2 s for different postural conditions, modalities and deliberate or passive shift. They are just longer for haptic than visual shift, just shorter on withdrawal than on addition of stabilizing input, and on deliberate than unexpected mode. The delays are the shortest (for haptic shift) in blind subjects. Since automatic balance stabilization may be vulnerable to sensory-integration delays and to interference from concurrent cognitive tasks in patients with sensorimotor problems, insight into the processing time for balance control represents a critical step in the design of new balance- and locomotion training devices.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">25339872</PMID>
<DateCreated>
<Year>2014</Year>
<Month>10</Month>
<Day>23</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>10</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1662-5137</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in systems neuroscience</Title>
<ISOAbbreviation>Front Syst Neurosci</ISOAbbreviation>
</Journal>
<ArticleTitle>Time-interval for integration of stabilizing haptic and visual information in subjects balancing under static and dynamic conditions.</ArticleTitle>
<Pagination>
<MedlinePgn>190</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fnsys.2014.00190</ELocationID>
<Abstract>
<AbstractText>Maintaining equilibrium is basically a sensorimotor integration task. The central nervous system (CNS) continually and selectively weights and rapidly integrates sensory inputs from multiple sources, and coordinates multiple outputs. The weighting process is based on the availability and accuracy of afferent signals at a given instant, on the time-period required to process each input, and possibly on the plasticity of the relevant pathways. The likelihood that sensory inflow changes while balancing under static or dynamic conditions is high, because subjects can pass from a dark to a well-lit environment or from a tactile-guided stabilization to loss of haptic inflow. This review article presents recent data on the temporal events accompanying sensory transition, on which basic information is fragmentary. The processing time from sensory shift to reaching a new steady state includes the time to (a) subtract or integrate sensory inputs; (b) move from allocentric to egocentric reference or vice versa; and (c) adjust the calibration of motor activity in time and amplitude to the new sensory set. We present examples of processes of integration of posture-stabilizing information, and of the respective sensorimotor time-intervals while allowing or occluding vision or adding or subtracting tactile information. These intervals are short, in the order of 1-2 s for different postural conditions, modalities and deliberate or passive shift. They are just longer for haptic than visual shift, just shorter on withdrawal than on addition of stabilizing input, and on deliberate than unexpected mode. The delays are the shortest (for haptic shift) in blind subjects. Since automatic balance stabilization may be vulnerable to sensory-integration delays and to interference from concurrent cognitive tasks in patients with sensorimotor problems, insight into the processing time for balance control represents a critical step in the design of new balance- and locomotion training devices.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Honeine</LastName>
<ForeName>Jean-Louis</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Department of Public Health, Experimental and Forensic Medicine, University of Pavia Pavia, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schieppati</LastName>
<ForeName>Marco</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Public Health, Experimental and Forensic Medicine, University of Pavia Pavia, Italy ; Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Scientific Institute of Pavia Pavia, Italy.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Syst Neurosci</MedlineTA>
<NlmUniqueID>101477946</NlmUniqueID>
<ISSNLinking>1662-5137</ISSNLinking>
</MedlineJournalInfo>
<OtherID Source="NLM">PMC4186340</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">dynamic balance</Keyword>
<Keyword MajorTopicYN="N">equilibrium</Keyword>
<Keyword MajorTopicYN="N">haptic</Keyword>
<Keyword MajorTopicYN="N">quiet stance</Keyword>
<Keyword MajorTopicYN="N">sensory integration</Keyword>
<Keyword MajorTopicYN="N">sensory reweighting</Keyword>
<Keyword MajorTopicYN="N">vision</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="ecollection">
<Year>2014</Year>
<Month></Month>
<Day></Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>7</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>9</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2014</Year>
<Month>10</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.3389/fnsys.2014.00190</ArticleId>
<ArticleId IdType="pubmed">25339872</ArticleId>
<ArticleId IdType="pmc">PMC4186340</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000515 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000515 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25339872
   |texte=   Time-interval for integration of stabilizing haptic and visual information in subjects balancing under static and dynamic conditions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25339872" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024