Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stabilization strategies for unstable dynamics.

Identifieur interne : 000491 ( PubMed/Corpus ); précédent : 000490; suivant : 000492

Stabilization strategies for unstable dynamics.

Auteurs : Pietro Morasso ; Maura Casadio ; Dalia De Santis ; Taishin Nomura ; Francesco Rea ; Jacopo Zenzeri

Source :

RBID : pubmed:25453479

English descriptors

Abstract

The stabilization of the human standing posture was originally attributed to the stiffness of the ankle muscles but direct measurements of the ankle stiffness ruled out this hypothesis, leaving open the possibility for a feedback stabilization strategy driven by proprioceptive signals. This solution, however, could be implemented with two different kinds of control mechanisms, namely continuous or intermittent feedback. The debate is now settled and the latter solution seems to be the most plausible one. Moreover, stabilization of unstable dynamics is not limited to bipedal standing. Indeed many manipulation tasks can be described in the same framework and thus a very general protocol for addressing this kind of problems is the use of haptic virtual reality where instability is generated by some kind of divergent or saddle-like force field. Several studies demonstrated that human subjects can choose to adopt a stiffness or feedback strategy as a combination of biomechanical and task constraints and can learn to switch from one strategy to the other if it is feasible or to use one or the other is infeasible. Understanding such mechanisms is relevant, for example, for the design of novel ergonomic man-machine interfaces in difficult, unstable tasks.

DOI: 10.1016/j.jelekin.2014.10.006
PubMed: 25453479

Links to Exploration step

pubmed:25453479

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stabilization strategies for unstable dynamics.</title>
<author>
<name sortKey="Morasso, Pietro" sort="Morasso, Pietro" uniqKey="Morasso P" first="Pietro" last="Morasso">Pietro Morasso</name>
<affiliation>
<nlm:affiliation>Istituto Italiano di Tecnologia, Department of Robotics, Brain and Cognitive Sciences, Genoa, Italy. Electronic address: pietro.morasso@iit.it.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Casadio, Maura" sort="Casadio, Maura" uniqKey="Casadio M" first="Maura" last="Casadio">Maura Casadio</name>
<affiliation>
<nlm:affiliation>University of Genoa, Department of Informatics, Bioengineering, Robotics and Systems Engineering, Genoa, Italy. Electronic address: maura.casadio@unige.it.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Santis, Dalia" sort="De Santis, Dalia" uniqKey="De Santis D" first="Dalia" last="De Santis">Dalia De Santis</name>
<affiliation>
<nlm:affiliation>Istituto Italiano di Tecnologia, Department of Robotics, Brain and Cognitive Sciences, Genoa, Italy. Electronic address: dalia.desantis@iit.it.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nomura, Taishin" sort="Nomura, Taishin" uniqKey="Nomura T" first="Taishin" last="Nomura">Taishin Nomura</name>
<affiliation>
<nlm:affiliation>Department of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan. Electronic address: taishin@bpe.es.osaka-u.ac.jp.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rea, Francesco" sort="Rea, Francesco" uniqKey="Rea F" first="Francesco" last="Rea">Francesco Rea</name>
<affiliation>
<nlm:affiliation>Istituto Italiano di Tecnologia, Department of Robotics, Brain and Cognitive Sciences, Genoa, Italy. Electronic address: Francesco.rea@iit.it.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zenzeri, Jacopo" sort="Zenzeri, Jacopo" uniqKey="Zenzeri J" first="Jacopo" last="Zenzeri">Jacopo Zenzeri</name>
<affiliation>
<nlm:affiliation>Istituto Italiano di Tecnologia, Department of Robotics, Brain and Cognitive Sciences, Genoa, Italy. Electronic address: jacopo.zenzeri@iit.it.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="doi">10.1016/j.jelekin.2014.10.006</idno>
<idno type="RBID">pubmed:25453479</idno>
<idno type="pmid">25453479</idno>
<idno type="wicri:Area/PubMed/Corpus">000491</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stabilization strategies for unstable dynamics.</title>
<author>
<name sortKey="Morasso, Pietro" sort="Morasso, Pietro" uniqKey="Morasso P" first="Pietro" last="Morasso">Pietro Morasso</name>
<affiliation>
<nlm:affiliation>Istituto Italiano di Tecnologia, Department of Robotics, Brain and Cognitive Sciences, Genoa, Italy. Electronic address: pietro.morasso@iit.it.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Casadio, Maura" sort="Casadio, Maura" uniqKey="Casadio M" first="Maura" last="Casadio">Maura Casadio</name>
<affiliation>
<nlm:affiliation>University of Genoa, Department of Informatics, Bioengineering, Robotics and Systems Engineering, Genoa, Italy. Electronic address: maura.casadio@unige.it.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Santis, Dalia" sort="De Santis, Dalia" uniqKey="De Santis D" first="Dalia" last="De Santis">Dalia De Santis</name>
<affiliation>
<nlm:affiliation>Istituto Italiano di Tecnologia, Department of Robotics, Brain and Cognitive Sciences, Genoa, Italy. Electronic address: dalia.desantis@iit.it.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nomura, Taishin" sort="Nomura, Taishin" uniqKey="Nomura T" first="Taishin" last="Nomura">Taishin Nomura</name>
<affiliation>
<nlm:affiliation>Department of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan. Electronic address: taishin@bpe.es.osaka-u.ac.jp.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rea, Francesco" sort="Rea, Francesco" uniqKey="Rea F" first="Francesco" last="Rea">Francesco Rea</name>
<affiliation>
<nlm:affiliation>Istituto Italiano di Tecnologia, Department of Robotics, Brain and Cognitive Sciences, Genoa, Italy. Electronic address: Francesco.rea@iit.it.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zenzeri, Jacopo" sort="Zenzeri, Jacopo" uniqKey="Zenzeri J" first="Jacopo" last="Zenzeri">Jacopo Zenzeri</name>
<affiliation>
<nlm:affiliation>Istituto Italiano di Tecnologia, Department of Robotics, Brain and Cognitive Sciences, Genoa, Italy. Electronic address: jacopo.zenzeri@iit.it.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology</title>
<idno type="eISSN">1873-5711</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Computer Simulation (trends)</term>
<term>Feedback, Physiological (physiology)</term>
<term>Humans</term>
<term>Muscle, Skeletal (physiology)</term>
<term>Posture (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Feedback, Physiological</term>
<term>Muscle, Skeletal</term>
<term>Posture</term>
</keywords>
<keywords scheme="MESH" qualifier="trends" xml:lang="en">
<term>Computer Simulation</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The stabilization of the human standing posture was originally attributed to the stiffness of the ankle muscles but direct measurements of the ankle stiffness ruled out this hypothesis, leaving open the possibility for a feedback stabilization strategy driven by proprioceptive signals. This solution, however, could be implemented with two different kinds of control mechanisms, namely continuous or intermittent feedback. The debate is now settled and the latter solution seems to be the most plausible one. Moreover, stabilization of unstable dynamics is not limited to bipedal standing. Indeed many manipulation tasks can be described in the same framework and thus a very general protocol for addressing this kind of problems is the use of haptic virtual reality where instability is generated by some kind of divergent or saddle-like force field. Several studies demonstrated that human subjects can choose to adopt a stiffness or feedback strategy as a combination of biomechanical and task constraints and can learn to switch from one strategy to the other if it is feasible or to use one or the other is infeasible. Understanding such mechanisms is relevant, for example, for the design of novel ergonomic man-machine interfaces in difficult, unstable tasks.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">25453479</PMID>
<DateCreated>
<Year>2014</Year>
<Month>12</Month>
<Day>03</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>17</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-5711</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology</Title>
<ISOAbbreviation>J Electromyogr Kinesiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Stabilization strategies for unstable dynamics.</ArticleTitle>
<Pagination>
<MedlinePgn>803-14</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jelekin.2014.10.006</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S1050-6411(14)00203-X</ELocationID>
<Abstract>
<AbstractText>The stabilization of the human standing posture was originally attributed to the stiffness of the ankle muscles but direct measurements of the ankle stiffness ruled out this hypothesis, leaving open the possibility for a feedback stabilization strategy driven by proprioceptive signals. This solution, however, could be implemented with two different kinds of control mechanisms, namely continuous or intermittent feedback. The debate is now settled and the latter solution seems to be the most plausible one. Moreover, stabilization of unstable dynamics is not limited to bipedal standing. Indeed many manipulation tasks can be described in the same framework and thus a very general protocol for addressing this kind of problems is the use of haptic virtual reality where instability is generated by some kind of divergent or saddle-like force field. Several studies demonstrated that human subjects can choose to adopt a stiffness or feedback strategy as a combination of biomechanical and task constraints and can learn to switch from one strategy to the other if it is feasible or to use one or the other is infeasible. Understanding such mechanisms is relevant, for example, for the design of novel ergonomic man-machine interfaces in difficult, unstable tasks.</AbstractText>
<CopyrightInformation>Copyright © 2014 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Morasso</LastName>
<ForeName>Pietro</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Istituto Italiano di Tecnologia, Department of Robotics, Brain and Cognitive Sciences, Genoa, Italy. Electronic address: pietro.morasso@iit.it.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Casadio</LastName>
<ForeName>Maura</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>University of Genoa, Department of Informatics, Bioengineering, Robotics and Systems Engineering, Genoa, Italy. Electronic address: maura.casadio@unige.it.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>De Santis</LastName>
<ForeName>Dalia</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Istituto Italiano di Tecnologia, Department of Robotics, Brain and Cognitive Sciences, Genoa, Italy. Electronic address: dalia.desantis@iit.it.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nomura</LastName>
<ForeName>Taishin</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan. Electronic address: taishin@bpe.es.osaka-u.ac.jp.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rea</LastName>
<ForeName>Francesco</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Istituto Italiano di Tecnologia, Department of Robotics, Brain and Cognitive Sciences, Genoa, Italy. Electronic address: Francesco.rea@iit.it.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zenzeri</LastName>
<ForeName>Jacopo</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Istituto Italiano di Tecnologia, Department of Robotics, Brain and Cognitive Sciences, Genoa, Italy. Electronic address: jacopo.zenzeri@iit.it.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Electromyogr Kinesiol</MedlineTA>
<NlmUniqueID>9109125</NlmUniqueID>
<ISSNLinking>1050-6411</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003198">Computer Simulation</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000639">trends</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D025461">Feedback, Physiological</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018482">Muscle, Skeletal</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011187">Posture</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Control strategies</Keyword>
<Keyword MajorTopicYN="N">Intermittent feedback control</Keyword>
<Keyword MajorTopicYN="N">Motor cognition</Keyword>
<Keyword MajorTopicYN="N">Motor control</Keyword>
<Keyword MajorTopicYN="N">Stiffness control</Keyword>
<Keyword MajorTopicYN="N">Unstable tasks</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>7</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>9</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>10</Month>
<Day>8</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2014</Year>
<Month>10</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">S1050-6411(14)00203-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.jelekin.2014.10.006</ArticleId>
<ArticleId IdType="pubmed">25453479</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000491 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000491 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25453479
   |texte=   Stabilization strategies for unstable dynamics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25453479" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024