Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Development of a 3D-printed external ventricular drain placement simulator: technical note.

Identifieur interne : 000313 ( PubMed/Corpus ); précédent : 000312; suivant : 000314

Development of a 3D-printed external ventricular drain placement simulator: technical note.

Auteurs : Bruce L. Tai ; Deborah Rooney ; Francesca Stephenson ; Peng-Siang Liao ; Oren Sagher ; Albert J. Shih ; Luis E. Savastano

Source :

RBID : pubmed:26115472

English descriptors

Abstract

In this paper, the authors present a physical model developed to simulate accurate external ventricular drain (EVD) placement with realistic haptic and visual feedbacks to serve as a platform for complete procedural training. Insertion of an EVD via ventriculostomy is a common neurosurgical procedure used to monitor intracranial pressures and/or drain CSF. Currently, realistic training tools are scarce and mainly limited to virtual reality simulation systems. The use of 3D printing technology enables the development of realistic anatomical structures and customized design for physical simulators. In this study, the authors used the advantages of 3D printing to directly build the model geometry from stealth head CT scans and build a phantom brain mold based on 3D scans of a plastinated human brain. The resultant simulator provides realistic haptic feedback during a procedure, with visualization of catheter trajectory and fluid drainage. A multiinstitutional survey was also used to prove content validity of the simulator. With minor refinement, this simulator is expected to be a cost-effective tool for training neurosurgical residents in EVD placement.

DOI: 10.3171/2014.12.JNS141867
PubMed: 26115472

Links to Exploration step

pubmed:26115472

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Development of a 3D-printed external ventricular drain placement simulator: technical note.</title>
<author>
<name sortKey="Tai, Bruce L" sort="Tai, Bruce L" uniqKey="Tai B" first="Bruce L" last="Tai">Bruce L. Tai</name>
<affiliation>
<nlm:affiliation>Departments of 1 Mechanical Engineering.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rooney, Deborah" sort="Rooney, Deborah" uniqKey="Rooney D" first="Deborah" last="Rooney">Deborah Rooney</name>
<affiliation>
<nlm:affiliation>Learning Health Sciences, University of Michigan, Ann Arbor, Michigan; and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stephenson, Francesca" sort="Stephenson, Francesca" uniqKey="Stephenson F" first="Francesca" last="Stephenson">Francesca Stephenson</name>
<affiliation>
<nlm:affiliation>Departments of 1 Mechanical Engineering.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liao, Peng Siang" sort="Liao, Peng Siang" uniqKey="Liao P" first="Peng-Siang" last="Liao">Peng-Siang Liao</name>
<affiliation>
<nlm:affiliation>Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sagher, Oren" sort="Sagher, Oren" uniqKey="Sagher O" first="Oren" last="Sagher">Oren Sagher</name>
<affiliation>
<nlm:affiliation>Neurosurgery, and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shih, Albert J" sort="Shih, Albert J" uniqKey="Shih A" first="Albert J" last="Shih">Albert J. Shih</name>
<affiliation>
<nlm:affiliation>Departments of 1 Mechanical Engineering.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Savastano, Luis E" sort="Savastano, Luis E" uniqKey="Savastano L" first="Luis E" last="Savastano">Luis E. Savastano</name>
<affiliation>
<nlm:affiliation>Neurosurgery, and.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26115472</idno>
<idno type="pmid">26115472</idno>
<idno type="doi">10.3171/2014.12.JNS141867</idno>
<idno type="wicri:Area/PubMed/Corpus">000313</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Development of a 3D-printed external ventricular drain placement simulator: technical note.</title>
<author>
<name sortKey="Tai, Bruce L" sort="Tai, Bruce L" uniqKey="Tai B" first="Bruce L" last="Tai">Bruce L. Tai</name>
<affiliation>
<nlm:affiliation>Departments of 1 Mechanical Engineering.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rooney, Deborah" sort="Rooney, Deborah" uniqKey="Rooney D" first="Deborah" last="Rooney">Deborah Rooney</name>
<affiliation>
<nlm:affiliation>Learning Health Sciences, University of Michigan, Ann Arbor, Michigan; and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stephenson, Francesca" sort="Stephenson, Francesca" uniqKey="Stephenson F" first="Francesca" last="Stephenson">Francesca Stephenson</name>
<affiliation>
<nlm:affiliation>Departments of 1 Mechanical Engineering.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liao, Peng Siang" sort="Liao, Peng Siang" uniqKey="Liao P" first="Peng-Siang" last="Liao">Peng-Siang Liao</name>
<affiliation>
<nlm:affiliation>Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sagher, Oren" sort="Sagher, Oren" uniqKey="Sagher O" first="Oren" last="Sagher">Oren Sagher</name>
<affiliation>
<nlm:affiliation>Neurosurgery, and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shih, Albert J" sort="Shih, Albert J" uniqKey="Shih A" first="Albert J" last="Shih">Albert J. Shih</name>
<affiliation>
<nlm:affiliation>Departments of 1 Mechanical Engineering.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Savastano, Luis E" sort="Savastano, Luis E" uniqKey="Savastano L" first="Luis E" last="Savastano">Luis E. Savastano</name>
<affiliation>
<nlm:affiliation>Neurosurgery, and.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of neurosurgery</title>
<idno type="eISSN">1933-0693</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Drainage</term>
<term>Humans</term>
<term>Printing, Three-Dimensional</term>
<term>Simulation Training</term>
<term>Surveys and Questionnaires</term>
<term>Ventriculostomy (education)</term>
</keywords>
<keywords scheme="MESH" qualifier="education" xml:lang="en">
<term>Ventriculostomy</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Drainage</term>
<term>Humans</term>
<term>Printing, Three-Dimensional</term>
<term>Simulation Training</term>
<term>Surveys and Questionnaires</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, the authors present a physical model developed to simulate accurate external ventricular drain (EVD) placement with realistic haptic and visual feedbacks to serve as a platform for complete procedural training. Insertion of an EVD via ventriculostomy is a common neurosurgical procedure used to monitor intracranial pressures and/or drain CSF. Currently, realistic training tools are scarce and mainly limited to virtual reality simulation systems. The use of 3D printing technology enables the development of realistic anatomical structures and customized design for physical simulators. In this study, the authors used the advantages of 3D printing to directly build the model geometry from stealth head CT scans and build a phantom brain mold based on 3D scans of a plastinated human brain. The resultant simulator provides realistic haptic feedback during a procedure, with visualization of catheter trajectory and fluid drainage. A multiinstitutional survey was also used to prove content validity of the simulator. With minor refinement, this simulator is expected to be a cost-effective tool for training neurosurgical residents in EVD placement.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">26115472</PMID>
<DateCreated>
<Year>2015</Year>
<Month>10</Month>
<Day>01</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>31</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1933-0693</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>123</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2015</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Journal of neurosurgery</Title>
<ISOAbbreviation>J. Neurosurg.</ISOAbbreviation>
</Journal>
<ArticleTitle>Development of a 3D-printed external ventricular drain placement simulator: technical note.</ArticleTitle>
<Pagination>
<MedlinePgn>1070-6</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3171/2014.12.JNS141867</ELocationID>
<Abstract>
<AbstractText>In this paper, the authors present a physical model developed to simulate accurate external ventricular drain (EVD) placement with realistic haptic and visual feedbacks to serve as a platform for complete procedural training. Insertion of an EVD via ventriculostomy is a common neurosurgical procedure used to monitor intracranial pressures and/or drain CSF. Currently, realistic training tools are scarce and mainly limited to virtual reality simulation systems. The use of 3D printing technology enables the development of realistic anatomical structures and customized design for physical simulators. In this study, the authors used the advantages of 3D printing to directly build the model geometry from stealth head CT scans and build a phantom brain mold based on 3D scans of a plastinated human brain. The resultant simulator provides realistic haptic feedback during a procedure, with visualization of catheter trajectory and fluid drainage. A multiinstitutional survey was also used to prove content validity of the simulator. With minor refinement, this simulator is expected to be a cost-effective tool for training neurosurgical residents in EVD placement.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tai</LastName>
<ForeName>Bruce L</ForeName>
<Initials>BL</Initials>
<AffiliationInfo>
<Affiliation>Departments of 1 Mechanical Engineering.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Neurosurgery, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rooney</LastName>
<ForeName>Deborah</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Learning Health Sciences, University of Michigan, Ann Arbor, Michigan; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stephenson</LastName>
<ForeName>Francesca</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Departments of 1 Mechanical Engineering.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liao</LastName>
<ForeName>Peng-Siang</ForeName>
<Initials>PS</Initials>
<AffiliationInfo>
<Affiliation>Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sagher</LastName>
<ForeName>Oren</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Neurosurgery, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shih</LastName>
<ForeName>Albert J</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>Departments of 1 Mechanical Engineering.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Savastano</LastName>
<ForeName>Luis E</ForeName>
<Initials>LE</Initials>
<AffiliationInfo>
<Affiliation>Neurosurgery, and.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>06</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurosurg</MedlineTA>
<NlmUniqueID>0253357</NlmUniqueID>
<ISSNLinking>0022-3085</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D004322">Drainage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D066330">Printing, Three-Dimensional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D000066908">Simulation Training</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011795">Surveys and Questionnaires</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014696">Ventriculostomy</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000193">education</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">EVD = external ventricular drain</Keyword>
<Keyword MajorTopicYN="N">ICP = intracranial pressure</Keyword>
<Keyword MajorTopicYN="N">VR = virtual reality</Keyword>
<Keyword MajorTopicYN="N">external ventricular drain model</Keyword>
<Keyword MajorTopicYN="N">intracranial pressure</Keyword>
<Keyword MajorTopicYN="N">simulator</Keyword>
<Keyword MajorTopicYN="N">surgical technique</Keyword>
<Keyword MajorTopicYN="N">ventriculostomy</Keyword>
<Keyword MajorTopicYN="N">virtual reality</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2015</Year>
<Month>6</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26115472</ArticleId>
<ArticleId IdType="doi">10.3171/2014.12.JNS141867</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000313 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000313 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26115472
   |texte=   Development of a 3D-printed external ventricular drain placement simulator: technical note.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26115472" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024