Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Haptic wearables as sensory replacement, sensory augmentation and trainer - a review.

Identifieur interne : 000293 ( PubMed/Corpus ); précédent : 000292; suivant : 000294

Haptic wearables as sensory replacement, sensory augmentation and trainer - a review.

Auteurs : Peter B. Shull ; Dana D. Damian

Source :

RBID : pubmed:26188929

English descriptors

Abstract

Sensory impairments decrease quality of life and can slow or hinder rehabilitation. Small, computationally powerful electronics have enabled the recent development of wearable systems aimed to improve function for individuals with sensory impairments. The purpose of this review is to synthesize current haptic wearable research for clinical applications involving sensory impairments. We define haptic wearables as untethered, ungrounded body worn devices that interact with skin directly or through clothing and can be used in natural environments outside a laboratory. Results of this review are categorized by degree of sensory impairment. Total impairment, such as in an amputee, blind, or deaf individual, involves haptics acting as sensory replacement; partial impairment, as is common in rehabilitation, involves haptics as sensory augmentation; and no impairment involves haptics as trainer. This review found that wearable haptic devices improved function for a variety of clinical applications including: rehabilitation, prosthetics, vestibular loss, osteoarthritis, vision loss and hearing loss. Future haptic wearables development should focus on clinical needs, intuitive and multimodal haptic displays, low energy demands, and biomechanical compliance for long-term usage.

DOI: 10.1186/s12984-015-0055-z
PubMed: 26188929

Links to Exploration step

pubmed:26188929

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Haptic wearables as sensory replacement, sensory augmentation and trainer - a review.</title>
<author>
<name sortKey="Shull, Peter B" sort="Shull, Peter B" uniqKey="Shull P" first="Peter B" last="Shull">Peter B. Shull</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Room 930, Mechanical Engineering Bld, 800 Dong Chuan Road, Shanghai, 200240, China. pshull@sjtu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Damian, Dana D" sort="Damian, Dana D" uniqKey="Damian D" first="Dana D" last="Damian">Dana D. Damian</name>
<affiliation>
<nlm:affiliation>Boston Children's Hospital, Harvard University, 330 Longwood Avenue, Boston, Massachusetts, 02115, USA. dana.damian@childrens.harvard.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="doi">10.1186/s12984-015-0055-z</idno>
<idno type="RBID">pubmed:26188929</idno>
<idno type="pmid">26188929</idno>
<idno type="wicri:Area/PubMed/Corpus">000293</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Haptic wearables as sensory replacement, sensory augmentation and trainer - a review.</title>
<author>
<name sortKey="Shull, Peter B" sort="Shull, Peter B" uniqKey="Shull P" first="Peter B" last="Shull">Peter B. Shull</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Room 930, Mechanical Engineering Bld, 800 Dong Chuan Road, Shanghai, 200240, China. pshull@sjtu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Damian, Dana D" sort="Damian, Dana D" uniqKey="Damian D" first="Dana D" last="Damian">Dana D. Damian</name>
<affiliation>
<nlm:affiliation>Boston Children's Hospital, Harvard University, 330 Longwood Avenue, Boston, Massachusetts, 02115, USA. dana.damian@childrens.harvard.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of neuroengineering and rehabilitation</title>
<idno type="eISSN">1743-0003</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Feedback, Sensory</term>
<term>Humans</term>
<term>Prostheses and Implants</term>
<term>Prosthesis Design</term>
<term>Sensation Disorders (rehabilitation)</term>
<term>Wireless Technology</term>
</keywords>
<keywords scheme="MESH" qualifier="rehabilitation" xml:lang="en">
<term>Sensation Disorders</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Feedback, Sensory</term>
<term>Humans</term>
<term>Prostheses and Implants</term>
<term>Prosthesis Design</term>
<term>Wireless Technology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sensory impairments decrease quality of life and can slow or hinder rehabilitation. Small, computationally powerful electronics have enabled the recent development of wearable systems aimed to improve function for individuals with sensory impairments. The purpose of this review is to synthesize current haptic wearable research for clinical applications involving sensory impairments. We define haptic wearables as untethered, ungrounded body worn devices that interact with skin directly or through clothing and can be used in natural environments outside a laboratory. Results of this review are categorized by degree of sensory impairment. Total impairment, such as in an amputee, blind, or deaf individual, involves haptics acting as sensory replacement; partial impairment, as is common in rehabilitation, involves haptics as sensory augmentation; and no impairment involves haptics as trainer. This review found that wearable haptic devices improved function for a variety of clinical applications including: rehabilitation, prosthetics, vestibular loss, osteoarthritis, vision loss and hearing loss. Future haptic wearables development should focus on clinical needs, intuitive and multimodal haptic displays, low energy demands, and biomechanical compliance for long-term usage.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">26188929</PMID>
<DateCreated>
<Year>2015</Year>
<Month>07</Month>
<Day>20</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>07</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1743-0003</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>Journal of neuroengineering and rehabilitation</Title>
<ISOAbbreviation>J Neuroeng Rehabil</ISOAbbreviation>
</Journal>
<ArticleTitle>Haptic wearables as sensory replacement, sensory augmentation and trainer - a review.</ArticleTitle>
<Pagination>
<MedlinePgn>59</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12984-015-0055-z</ELocationID>
<Abstract>
<AbstractText>Sensory impairments decrease quality of life and can slow or hinder rehabilitation. Small, computationally powerful electronics have enabled the recent development of wearable systems aimed to improve function for individuals with sensory impairments. The purpose of this review is to synthesize current haptic wearable research for clinical applications involving sensory impairments. We define haptic wearables as untethered, ungrounded body worn devices that interact with skin directly or through clothing and can be used in natural environments outside a laboratory. Results of this review are categorized by degree of sensory impairment. Total impairment, such as in an amputee, blind, or deaf individual, involves haptics acting as sensory replacement; partial impairment, as is common in rehabilitation, involves haptics as sensory augmentation; and no impairment involves haptics as trainer. This review found that wearable haptic devices improved function for a variety of clinical applications including: rehabilitation, prosthetics, vestibular loss, osteoarthritis, vision loss and hearing loss. Future haptic wearables development should focus on clinical needs, intuitive and multimodal haptic displays, low energy demands, and biomechanical compliance for long-term usage.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shull</LastName>
<ForeName>Peter B</ForeName>
<Initials>PB</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Room 930, Mechanical Engineering Bld, 800 Dong Chuan Road, Shanghai, 200240, China. pshull@sjtu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Damian</LastName>
<ForeName>Dana D</ForeName>
<Initials>DD</Initials>
<AffiliationInfo>
<Affiliation>Boston Children's Hospital, Harvard University, 330 Longwood Avenue, Boston, Massachusetts, 02115, USA. dana.damian@childrens.harvard.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Neuroeng Rehabil</MedlineTA>
<NlmUniqueID>101232233</NlmUniqueID>
<ISSNLinking>1743-0003</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Prosthet Orthot Int. 2007 Sep;31(3):236-57</RefSource>
<PMID Version="1">17979010</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prosthet Orthot Int. 2007 Dec;31(4):362-70</RefSource>
<PMID Version="1">18050007</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Factors. 2008 Feb;50(1):90-111</RefSource>
<PMID Version="1">18354974</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vestib Res. 2010;20(1):61-9</RefSource>
<PMID Version="1">20555168</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech Eng. 2010 Jul;132(7):071007</RefSource>
<PMID Version="1">20590285</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2010 May;57(5):1243-52</RefSource>
<PMID Version="1">20172811</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomed Eng Online. 2010;9:50</RefSource>
<PMID Version="1">20840758</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Eng Phys. 2010 Nov;32(9):1009-14</RefSource>
<PMID Version="1">20685147</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2103-6</RefSource>
<PMID Version="1">21095950</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurorehabil Neural Repair. 2011 Feb;25(2):110-7</RefSource>
<PMID Version="1">20829412</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech Eng. 2011 Apr;133(4):041007</RefSource>
<PMID Version="1">21428681</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 2011 May 17;44(8):1605-9</RefSource>
<PMID Version="1">21459384</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 2011;48(4):387-416</RefSource>
<PMID Version="1">21674390</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2011 Jul;12(7):415-26</RefSource>
<PMID Version="1">21685932</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2011 Aug;19(4):374-81</RefSource>
<PMID Version="1">21511568</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Phys Med Rehabil. 2011 Sep;92(9):1364-70</RefSource>
<PMID Version="1">21878206</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Disabil Rehabil Assist Technol. 2007 Nov;2(6):346-57</RefSource>
<PMID Version="1">19263565</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 2011;48(6):719-37</RefSource>
<PMID Version="1">21938658</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroeng Rehabil. 2011;8:60</RefSource>
<PMID Version="1">22032545</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2011 Dec;19(6):677-85</RefSource>
<PMID Version="1">21984521</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gait Posture. 2012 Apr;35(4):523-8</RefSource>
<PMID Version="1">22406291</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Sports Med. 2012 May;40(5):1075-83</RefSource>
<PMID Version="1">22459239</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroeng Rehabil. 2012;9:17</RefSource>
<PMID Version="1">22463132</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroeng Rehabil. 2012;9:21</RefSource>
<PMID Version="1">22520559</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Disabil Rehabil Assist Technol. 2012 Jul;7(4):294-303</RefSource>
<PMID Version="1">22112174</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2012 Aug;59(8):2200-10</RefSource>
<PMID Version="1">22614517</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2012 Aug;59(8):2219-26</RefSource>
<PMID Version="1">22645262</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2012 Oct;222(4):471-82</RefSource>
<PMID Version="1">22968737</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 2013 Jan 4;46(1):122-8</RefSource>
<PMID Version="1">23146322</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Expert Rev Med Devices. 2013 Jan;10(1):45-54</RefSource>
<PMID Version="1">23278223</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2013 Jan;21(1):112-20</RefSource>
<PMID Version="1">23033439</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Eng Phys. 2013 Feb;35(2):269-76</RefSource>
<PMID Version="1">21978912</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 2012;49(8):1239-54</RefSource>
<PMID Version="1">23341316</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychon Bull Rev. 2013 Feb;20(1):21-53</RefSource>
<PMID Version="1">23132605</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2013 May 1;33(18):7870-6</RefSource>
<PMID Version="1">23637178</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Mater. 2013 May 28;25(20):2773-8</RefSource>
<PMID Version="1">23440975</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Orthop Res. 2013 Jul;31(7):1020-5</RefSource>
<PMID Version="1">23494804</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroeng Rehabil. 2013;10:93</RefSource>
<PMID Version="1">23938136</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vestib Res. 2007;17(4):195-204</RefSource>
<PMID Version="1">18525145</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2008 Jun;16(3):270-7</RefSource>
<PMID Version="1">18586606</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parkinsonism Relat Disord. 2012 Nov;18(9):1017-21</RefSource>
<PMID Version="1">22721975</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2013 Aug;60(8):2226-32</RefSource>
<PMID Version="1">23508245</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gait Posture. 2013 Sep;38(4):777-83</RefSource>
<PMID Version="1">23623605</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroeng Rehabil. 2013;10:115</RefSource>
<PMID Version="1">24354579</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroeng Rehabil. 2014;11:36</RefSource>
<PMID Version="1">24625308</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gait Posture. 2014;40(1):11-9</RefSource>
<PMID Version="1">24768525</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 2014;51(6):907-17</RefSource>
<PMID Version="1">25356723</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2015 Mar;23(2):250-7</RefSource>
<PMID Version="1">25373108</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prosthet Orthot Int. 2015 Jun;39(3):255-9</RefSource>
<PMID Version="1">24519475</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Aging. 2009 Mar;24(1):1-16</RefSource>
<PMID Version="1">19290733</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gait Posture. 2009 Jun;29(4):575-81</RefSource>
<PMID Version="1">19157877</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gait Posture. 2009 Jul;30(1):76-81</RefSource>
<PMID Version="1">19356934</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vestib Res. 2008;18(5-6):273-85</RefSource>
<PMID Version="1">19542601</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 2009 May;1164:279-81</RefSource>
<PMID Version="1">19645912</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gait Posture. 2009 Oct;30(3):383-7</RefSource>
<PMID Version="1">19632845</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2009 Dec;17(6):560-7</RefSource>
<PMID Version="1">19457753</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2010 Feb;18(1):58-66</RefSource>
<PMID Version="1">20071271</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gait Posture. 2010 Apr;31(4):465-72</RefSource>
<PMID Version="1">20206528</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurorehabil Neural Repair. 2010 Jun;24(5):478-85</RefSource>
<PMID Version="1">20053951</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2001 Oct;48(10):1153-61</RefSource>
<PMID Version="1">11585039</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2003 Feb;89(2):665-71</RefSource>
<PMID Version="1">12574444</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Eng Med Biol Mag. 2003 Mar-Apr;22(2):84-90</RefSource>
<PMID Version="1">12733464</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Otol Rhinol Laryngol. 2003 May;112(5):404-9</RefSource>
<PMID Version="1">12784977</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Eng Med Biol Mag. 2003 May-Jun;22(3):41-8</RefSource>
<PMID Version="1">12845818</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet. 2003 Oct 4;362(9390):1123-4</RefSource>
<PMID Version="1">14550702</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ear Hear. 2003 Dec;24(6):528-38</RefSource>
<PMID Version="1">14663352</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2004 Feb;115(2):267-81</RefSource>
<PMID Version="1">14744566</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1969 Mar 8;221(5184):963-4</RefSource>
<PMID Version="1">5818337</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stroke. 1971 May-Jun;2(3):213-8</RefSource>
<PMID Version="1">5111570</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1981 May 14;291(5811):150-2</RefSource>
<PMID Version="1">7231534</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Syst. 1981;5(4):265-70</RefSource>
<PMID Version="1">7320662</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Scand J Rehabil Med. 1982;14(1):27-32</RefSource>
<PMID Version="1">7063817</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1984;56(3):550-64</RefSource>
<PMID Version="1">6499981</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 1989 Summer;26(3):53-62</RefSource>
<PMID Version="1">2666644</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Acoust Soc Am. 1989 Nov;86(5):1764-75</RefSource>
<PMID Version="1">2808925</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Q J Med. 1990 Jul;76(279):659-74</RefSource>
<PMID Version="1">2217671</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Acoust Soc Am. 1991 Dec;90(6):2971-84</RefSource>
<PMID Version="1">1838561</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 1992 Winter;29(1):1-8</RefSource>
<PMID Version="1">1740774</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 1993;97:359-67</RefSource>
<PMID Version="1">8234761</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Can J Physiol Pharmacol. 1994 May;72(5):511-24</RefSource>
<PMID Version="1">7954081</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1994;100(3):495-502</RefSource>
<PMID Version="1">7813685</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiother Res Int. 1998;3(4):239-43</RefSource>
<PMID Version="1">9859132</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 1998 Oct;35(4):427-30</RefSource>
<PMID Version="1">10220221</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Acoust Soc Am. 2005 Aug;118(2):1003-15</RefSource>
<PMID Version="1">16158656</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Inf Technol Biomed. 2005 Sep;9(3):325-36</RefSource>
<PMID Version="1">16167686</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2006 Jan;59(1):4-12</RefSource>
<PMID Version="1">16287079</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2006 Mar;14(1):116-23</RefSource>
<PMID Version="1">16562639</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Sci. 2006 Oct 25;248(1-2):210-4</RefSource>
<PMID Version="1">16780887</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 2006 Aug-Sep;43(5):679-94</RefSource>
<PMID Version="1">17123208</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2007 May;179(3):409-14</RefSource>
<PMID Version="1">17136521</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):435-41</RefSource>
<PMID Version="1">17894276</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Conf Proc IEEE Eng Med Biol Soc. 2006;1:6289-92</RefSource>
<PMID Version="1">17945950</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D056228">Feedback, Sensory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D019736">Prostheses and Implants</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011474">Prosthesis Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012678">Sensation Disorders</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000534">rehabilitation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D059015">Wireless Technology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4506766</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>1</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>7</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2015</Year>
<Month>7</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1186/s12984-015-0055-z</ArticleId>
<ArticleId IdType="pii">10.1186/s12984-015-0055-z</ArticleId>
<ArticleId IdType="pubmed">26188929</ArticleId>
<ArticleId IdType="pmc">PMC4506766</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000293 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000293 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26188929
   |texte=   Haptic wearables as sensory replacement, sensory augmentation and trainer - a review.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26188929" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024