Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Processing time of addition or withdrawal of single or combined balance-stabilizing haptic and visual information.

Identifieur interne : 000263 ( PubMed/Corpus ); précédent : 000262; suivant : 000264

Processing time of addition or withdrawal of single or combined balance-stabilizing haptic and visual information.

Auteurs : Jean-Louis Honeine ; Oscar Crisafulli ; Stefania Sozzi ; Marco Schieppati

Source :

RBID : pubmed:26334013

Abstract

We investigated the integration time of haptic and visual input and their interaction during stance stabilization. Eleven subjects performed four tandem-stance conditions (60 trials each). Vision, touch, and both vision and touch were added and withdrawn. Furthermore, vision was replaced with touch and vice versa. Body sway, tibialis anterior, and peroneus longus activity were measured. Following addition or withdrawal of vision or touch, an integration time period elapsed before the earliest changes in sway were observed. Thereafter, sway varied exponentially to a new steady-state while reweighting occurred. Latencies of sway changes on sensory addition ranged from 0.6 to 1.5 s across subjects, consistently longer for touch than vision, and were regularly preceded by changes in muscle activity. Addition of vision and touch simultaneously shortened the latencies with respect to vision or touch separately, suggesting cooperation between sensory modalities. Latencies following withdrawal of vision or touch or both simultaneously were shorter than following addition. When vision was replaced with touch or vice versa, adding one modality did not interfere with the effect of withdrawal of the other, suggesting that integration of withdrawal and addition were performed in parallel. The time course of the reweighting process to reach the new steady-state was also shorter on withdrawal than addition. The effects of different sensory inputs on posture stabilization illustrate the operation of a time-consuming, possibly supraspinal process that integrates and fuses modalities for accurate balance control. This study also shows the facilitatory interaction of visual and haptic inputs in integration and reweighting of stance-stabilizing inputs.

DOI: 10.1152/jn.00618.2015
PubMed: 26334013

Links to Exploration step

pubmed:26334013

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Processing time of addition or withdrawal of single or combined balance-stabilizing haptic and visual information.</title>
<author>
<name sortKey="Honeine, Jean Louis" sort="Honeine, Jean Louis" uniqKey="Honeine J" first="Jean-Louis" last="Honeine">Jean-Louis Honeine</name>
<affiliation>
<nlm:affiliation>Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; and Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Pavia, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Crisafulli, Oscar" sort="Crisafulli, Oscar" uniqKey="Crisafulli O" first="Oscar" last="Crisafulli">Oscar Crisafulli</name>
<affiliation>
<nlm:affiliation>Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sozzi, Stefania" sort="Sozzi, Stefania" uniqKey="Sozzi S" first="Stefania" last="Sozzi">Stefania Sozzi</name>
<affiliation>
<nlm:affiliation>Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Pavia, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schieppati, Marco" sort="Schieppati, Marco" uniqKey="Schieppati M" first="Marco" last="Schieppati">Marco Schieppati</name>
<affiliation>
<nlm:affiliation>Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; and Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Pavia, Italy marco.schieppati@unipv.it.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26334013</idno>
<idno type="pmid">26334013</idno>
<idno type="doi">10.1152/jn.00618.2015</idno>
<idno type="wicri:Area/PubMed/Corpus">000263</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Processing time of addition or withdrawal of single or combined balance-stabilizing haptic and visual information.</title>
<author>
<name sortKey="Honeine, Jean Louis" sort="Honeine, Jean Louis" uniqKey="Honeine J" first="Jean-Louis" last="Honeine">Jean-Louis Honeine</name>
<affiliation>
<nlm:affiliation>Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; and Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Pavia, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Crisafulli, Oscar" sort="Crisafulli, Oscar" uniqKey="Crisafulli O" first="Oscar" last="Crisafulli">Oscar Crisafulli</name>
<affiliation>
<nlm:affiliation>Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sozzi, Stefania" sort="Sozzi, Stefania" uniqKey="Sozzi S" first="Stefania" last="Sozzi">Stefania Sozzi</name>
<affiliation>
<nlm:affiliation>Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Pavia, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schieppati, Marco" sort="Schieppati, Marco" uniqKey="Schieppati M" first="Marco" last="Schieppati">Marco Schieppati</name>
<affiliation>
<nlm:affiliation>Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; and Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Pavia, Italy marco.schieppati@unipv.it.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of neurophysiology</title>
<idno type="eISSN">1522-1598</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We investigated the integration time of haptic and visual input and their interaction during stance stabilization. Eleven subjects performed four tandem-stance conditions (60 trials each). Vision, touch, and both vision and touch were added and withdrawn. Furthermore, vision was replaced with touch and vice versa. Body sway, tibialis anterior, and peroneus longus activity were measured. Following addition or withdrawal of vision or touch, an integration time period elapsed before the earliest changes in sway were observed. Thereafter, sway varied exponentially to a new steady-state while reweighting occurred. Latencies of sway changes on sensory addition ranged from 0.6 to 1.5 s across subjects, consistently longer for touch than vision, and were regularly preceded by changes in muscle activity. Addition of vision and touch simultaneously shortened the latencies with respect to vision or touch separately, suggesting cooperation between sensory modalities. Latencies following withdrawal of vision or touch or both simultaneously were shorter than following addition. When vision was replaced with touch or vice versa, adding one modality did not interfere with the effect of withdrawal of the other, suggesting that integration of withdrawal and addition were performed in parallel. The time course of the reweighting process to reach the new steady-state was also shorter on withdrawal than addition. The effects of different sensory inputs on posture stabilization illustrate the operation of a time-consuming, possibly supraspinal process that integrates and fuses modalities for accurate balance control. This study also shows the facilitatory interaction of visual and haptic inputs in integration and reweighting of stance-stabilizing inputs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="In-Process">
<PMID Version="1">26334013</PMID>
<DateCreated>
<Year>2015</Year>
<Month>12</Month>
<Day>09</Day>
</DateCreated>
<DateRevised>
<Year>2015</Year>
<Month>12</Month>
<Day>31</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1598</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>114</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2015</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Journal of neurophysiology</Title>
<ISOAbbreviation>J. Neurophysiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Processing time of addition or withdrawal of single or combined balance-stabilizing haptic and visual information.</ArticleTitle>
<Pagination>
<MedlinePgn>3097-110</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/jn.00618.2015</ELocationID>
<Abstract>
<AbstractText>We investigated the integration time of haptic and visual input and their interaction during stance stabilization. Eleven subjects performed four tandem-stance conditions (60 trials each). Vision, touch, and both vision and touch were added and withdrawn. Furthermore, vision was replaced with touch and vice versa. Body sway, tibialis anterior, and peroneus longus activity were measured. Following addition or withdrawal of vision or touch, an integration time period elapsed before the earliest changes in sway were observed. Thereafter, sway varied exponentially to a new steady-state while reweighting occurred. Latencies of sway changes on sensory addition ranged from 0.6 to 1.5 s across subjects, consistently longer for touch than vision, and were regularly preceded by changes in muscle activity. Addition of vision and touch simultaneously shortened the latencies with respect to vision or touch separately, suggesting cooperation between sensory modalities. Latencies following withdrawal of vision or touch or both simultaneously were shorter than following addition. When vision was replaced with touch or vice versa, adding one modality did not interfere with the effect of withdrawal of the other, suggesting that integration of withdrawal and addition were performed in parallel. The time course of the reweighting process to reach the new steady-state was also shorter on withdrawal than addition. The effects of different sensory inputs on posture stabilization illustrate the operation of a time-consuming, possibly supraspinal process that integrates and fuses modalities for accurate balance control. This study also shows the facilitatory interaction of visual and haptic inputs in integration and reweighting of stance-stabilizing inputs.</AbstractText>
<CopyrightInformation>Copyright © 2015 the American Physiological Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Honeine</LastName>
<ForeName>Jean-Louis</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; and Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Pavia, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Crisafulli</LastName>
<ForeName>Oscar</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sozzi</LastName>
<ForeName>Stefania</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Pavia, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schieppati</LastName>
<ForeName>Marco</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; and Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Pavia, Italy marco.schieppati@unipv.it.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>09</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurophysiol</MedlineTA>
<NlmUniqueID>0375404</NlmUniqueID>
<ISSNLinking>0022-3077</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):8130-5</RefSource>
<PMID Version="1">18524953</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2008 Jul 22;18(14):1050-4</RefSource>
<PMID Version="1">18635355</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Med. 2008 Jul;40(7):539-47</RefSource>
<PMID Version="1">18758671</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2008 Dec;191(4):453-63</RefSource>
<PMID Version="1">18719898</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2008 Nov 15;23(15):2186-93</RefSource>
<PMID Version="1">18785234</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Physiol (Oxf). 2009 Mar;195(3):385-95</RefSource>
<PMID Version="1">18774948</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2009 Jul;102(1):496-512</RefSource>
<PMID Version="1">19403751</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Biol Eng Comput. 2009 Sep;47(9):921-9</RefSource>
<PMID Version="1">19326162</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol Paris. 2009 Jan-Mar;103(1-2):88-97</RefSource>
<PMID Version="1">19523515</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16457-62</RefSource>
<PMID Version="1">19805320</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2009 Dec 29;164(4):1601-8</RefSource>
<PMID Version="1">19782723</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 2010 Jan;108(1):85-97</RefSource>
<PMID Version="1">19910338</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2010 Feb;48(3):782-95</RefSource>
<PMID Version="1">19837101</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2010 Jul 27;20(14):1304-9</RefSource>
<PMID Version="1">20637619</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2010 Oct;104(4):1969-77</RefSource>
<PMID Version="1">20702741</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Neurol Scand. 2011 Feb;123(2):111-6</RefSource>
<PMID Version="1">20456247</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2011 Jan;227(1):26-30</RefSource>
<PMID Version="1">21087607</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mov Sci. 2011 Apr;30(2):172-89</RefSource>
<PMID Version="1">20727610</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mov Sci. 2011 Apr;30(2):262-78</RefSource>
<PMID Version="1">21440318</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Neurosci. 2011 Jun;30(3):759-78</RefSource>
<PMID Version="1">21161357</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2011 Jul;212(2):279-91</RefSource>
<PMID Version="1">21584624</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2012 Aug;108(4):1138-48</RefSource>
<PMID Version="1">22623486</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2000 Nov;84(5):2217-24</RefSource>
<PMID Version="1">11067967</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Cybern. 2001 Feb;84(2):103-15</RefSource>
<PMID Version="1">11205347</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2001 Feb;136(4):514-22</RefSource>
<PMID Version="1">11291732</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gait Posture. 2001 Dec;14(3):238-47</RefSource>
<PMID Version="1">11600327</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Jan 24;415(6870):429-33</RefSource>
<PMID Version="1">11807554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Cogn Brain Res. 2002 Jun;14(1):164-76</RefSource>
<PMID Version="1">12063140</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Gerontol A Biol Sci Med Sci. 2002 Aug;57(8):B321-9</RefSource>
<PMID Version="1">12145358</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 2003;142:189-201</RefSource>
<PMID Version="1">12693262</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Neurol. 2003;93:179-93</RefSource>
<PMID Version="1">12894408</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2004 Jan;91(1):410-23</RefSource>
<PMID Version="1">13679407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Sci. 2004 Jun;15(6):397-402</RefSource>
<PMID Version="1">15147493</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1979 Aug 1;36(3):551-61</RefSource>
<PMID Version="1">477782</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1982 May;2(5):536-44</RefSource>
<PMID Version="1">6978930</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Electroencephalogr Clin Neurophysiol. 1984 Nov;58(5):418-25</RefSource>
<PMID Version="1">6208008</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 1984;436:315-27</RefSource>
<PMID Version="1">6398017</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 1988;76:263-75</RefSource>
<PMID Version="1">3265212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1990 Feb;113 ( Pt 1):65-84</RefSource>
<PMID Version="1">2302538</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Otolaryngol. 1990 Jul-Aug;110(1-2):11-7</RefSource>
<PMID Version="1">2386025</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Gerontol. 1991 Nov;46(6):B238-44</RefSource>
<PMID Version="1">1940075</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2014 Sep 5;275:162-9</RefSource>
<PMID Version="1">24952331</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2014 Aug 19;1577:29-35</RefSource>
<PMID Version="1">24978603</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscientist. 2014 Oct;20(5):499-508</RefSource>
<PMID Version="1">24737695</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2014 Aug 1;112(3):525-42</RefSource>
<PMID Version="1">24760788</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2014 Dec 15;112(12):3023-32</RefSource>
<PMID Version="1">25253479</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2015 Jan 23;586:13-8</RefSource>
<PMID Version="1">25481762</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2015;10(4):e0124532</RefSource>
<PMID Version="1">25894558</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mov Sci. 2015 Jun;41:147-64</RefSource>
<PMID Version="1">25816794</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Biobehav Rev. 2015 Jun;53:131-8</RefSource>
<PMID Version="1">25882206</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2015;10(5):e0125179</RefSource>
<PMID Version="1">25993099</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2015 Aug;75:179-85</RefSource>
<PMID Version="1">26071257</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2015 Oct;126(10):1886-900</RefSource>
<PMID Version="1">25812729</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Exp Med Biol. 2002;508:129-37</RefSource>
<PMID Version="1">12171102</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Exp Med Biol. 2002;508:147-52</RefSource>
<PMID Version="1">12171105</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2002 Sep;88(3):1097-118</RefSource>
<PMID Version="1">12205132</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2003 Jan 24;961(1):73-80</RefSource>
<PMID Version="1">12535778</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2012 Jan;123(1):13-20</RefSource>
<PMID Version="1">22030138</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2012 Apr 18;23(6):369-72</RefSource>
<PMID Version="1">22407071</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Aging. 2012 Jun;33(6):1073-84</RefSource>
<PMID Version="1">21051105</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2012 Jun 14;212:59-76</RefSource>
<PMID Version="1">22516013</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Electromyogr Kinesiol. 2000 Oct;10(5):283-6</RefSource>
<PMID Version="1">11018437</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2000 Sep;134(1):107-25</RefSource>
<PMID Version="1">11026732</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Can J Physiol Pharmacol. 1994 May;72(5):542-5</RefSource>
<PMID Version="1">7954084</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Res. 1994;43(3):187-92</RefSource>
<PMID Version="1">7993887</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1994;100(3):495-502</RefSource>
<PMID Version="1">7813685</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1994 Oct 15;480 ( Pt 2):395-403</RefSource>
<PMID Version="1">7869254</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1995;105(1):101-10</RefSource>
<PMID Version="1">7589307</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1995 Sep 15;487 ( Pt 3):787-96</RefSource>
<PMID Version="1">8544139</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1996 Apr;58(3):409-23</RefSource>
<PMID Version="1">8935902</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1997 Mar;113(3):475-83</RefSource>
<PMID Version="1">9108214</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Child Psychol. 1998 Mar;68(3):202-15</RefSource>
<PMID Version="1">9514769</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1999 Apr;125(4):521-4</RefSource>
<PMID Version="1">10323300</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Biomech (Bristol, Avon). 2005 Feb;20(2):202-8</RefSource>
<PMID Version="1">15621326</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2005 Apr 1;564(Pt 1):281-93</RefSource>
<PMID Version="1">15661825</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2006 Jan 9;392(1-2):96-100</RefSource>
<PMID Version="1">16213655</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2006 Feb;169(2):232-6</RefSource>
<PMID Version="1">16273399</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2006 Mar;170(1):122-6</RefSource>
<PMID Version="1">16501964</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2006 Apr 24;397(3):301-6</RefSource>
<PMID Version="1">16426752</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2006 May;95(5):2733-50</RefSource>
<PMID Version="1">16467429</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Cybern. 2006 Aug;95(2):123-34</RefSource>
<PMID Version="1">16639582</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2006 Sep;96(3):1625-37</RefSource>
<PMID Version="1">16723415</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2006 Aug;24(3):917-24</RefSource>
<PMID Version="1">16930419</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Jun 27;27(26):7047-53</RefSource>
<PMID Version="1">17596454</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Bull. 2007 Sep 28;74(4):258-70</RefSource>
<PMID Version="1">17720548</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2012 Nov;223(1):99-108</RefSource>
<PMID Version="1">22965550</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cogn Process. 2012 Nov;13(4):285-301</RefSource>
<PMID Version="1">22669262</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2012 Nov;135(Pt 11):3371-9</RefSource>
<PMID Version="1">23169922</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2013 May;226(4):575-84</RefSource>
<PMID Version="1">23483209</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2013 Jun;124(6):1175-86</RefSource>
<PMID Version="1">23294550</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2013 Aug 29;550:35-40</RefSource>
<PMID Version="1">23827220</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gait Posture. 2013 Sep;38(4):643-7</RefSource>
<PMID Version="1">23518457</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gait Posture. 2013 Sep;38(4):708-11</RefSource>
<PMID Version="1">23566634</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2014 Feb;24(2):541-9</RefSource>
<PMID Version="1">23118194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014;9(1):e88132</RefSource>
<PMID Version="1">24498252</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2014 Feb 21;561:112-7</RefSource>
<PMID Version="1">24388842</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Age (Dordr). 2014 Apr;36(2):823-37</RefSource>
<PMID Version="1">24258770</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2014 May;111(9):1852-64</RefSource>
<PMID Version="1">24501263</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2014 May 30;268:247-54</RefSource>
<PMID Version="1">24662846</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2014 Jul;125(7):1427-39</RefSource>
<PMID Version="1">24332472</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neural Transm (Vienna). 2007;114(10):1279-96</RefSource>
<PMID Version="1">17557125</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 2007;165:283-97</RefSource>
<PMID Version="1">17925253</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2008 Feb;185(2):215-26</RefSource>
<PMID Version="1">17955227</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2008 Feb;99(2):595-604</RefSource>
<PMID Version="1">18032569</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2008 Jun;188(1):153-8</RefSource>
<PMID Version="1">18506433</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC4686285 [Available on 12/01/16]</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">haptic</Keyword>
<Keyword MajorTopicYN="N">sensory integration</Keyword>
<Keyword MajorTopicYN="N">sensory reweighting</Keyword>
<Keyword MajorTopicYN="N">standing</Keyword>
<Keyword MajorTopicYN="N">vision</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>6</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>8</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2015</Year>
<Month>9</Month>
<Day>2</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2016</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26334013</ArticleId>
<ArticleId IdType="pii">jn.00618.2015</ArticleId>
<ArticleId IdType="doi">10.1152/jn.00618.2015</ArticleId>
<ArticleId IdType="pmc">PMC4686285</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000263 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000263 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26334013
   |texte=   Processing time of addition or withdrawal of single or combined balance-stabilizing haptic and visual information.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26334013" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024