Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

From Sensory Signals to Modality-Independent Conceptual Representations: A Probabilistic Language of Thought Approach.

Identifieur interne : 000201 ( PubMed/Corpus ); précédent : 000200; suivant : 000202

From Sensory Signals to Modality-Independent Conceptual Representations: A Probabilistic Language of Thought Approach.

Auteurs : Goker Erdogan ; Ilker Yildirim ; Robert A. Jacobs

Source :

RBID : pubmed:26554704

English descriptors

Abstract

People learn modality-independent, conceptual representations from modality-specific sensory signals. Here, we hypothesize that any system that accomplishes this feat will include three components: a representational language for characterizing modality-independent representations, a set of sensory-specific forward models for mapping from modality-independent representations to sensory signals, and an inference algorithm for inverting forward models-that is, an algorithm for using sensory signals to infer modality-independent representations. To evaluate this hypothesis, we instantiate it in the form of a computational model that learns object shape representations from visual and/or haptic signals. The model uses a probabilistic grammar to characterize modality-independent representations of object shape, uses a computer graphics toolkit and a human hand simulator to map from object representations to visual and haptic features, respectively, and uses a Bayesian inference algorithm to infer modality-independent object representations from visual and/or haptic signals. Simulation results show that the model infers identical object representations when an object is viewed, grasped, or both. That is, the model's percepts are modality invariant. We also report the results of an experiment in which different subjects rated the similarity of pairs of objects in different sensory conditions, and show that the model provides a very accurate account of subjects' ratings. Conceptually, this research significantly contributes to our understanding of modality invariance, an important type of perceptual constancy, by demonstrating how modality-independent representations can be acquired and used. Methodologically, it provides an important contribution to cognitive modeling, particularly an emerging probabilistic language-of-thought approach, by showing how symbolic and statistical approaches can be combined in order to understand aspects of human perception.

DOI: 10.1371/journal.pcbi.1004610
PubMed: 26554704

Links to Exploration step

pubmed:26554704

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">From Sensory Signals to Modality-Independent Conceptual Representations: A Probabilistic Language of Thought Approach.</title>
<author>
<name sortKey="Erdogan, Goker" sort="Erdogan, Goker" uniqKey="Erdogan G" first="Goker" last="Erdogan">Goker Erdogan</name>
<affiliation>
<nlm:affiliation>Department of Brain & Cognitive Sciences, University of Rochester, Rochester, New York, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yildirim, Ilker" sort="Yildirim, Ilker" uniqKey="Yildirim I" first="Ilker" last="Yildirim">Ilker Yildirim</name>
<affiliation>
<nlm:affiliation>Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jacobs, Robert A" sort="Jacobs, Robert A" uniqKey="Jacobs R" first="Robert A" last="Jacobs">Robert A. Jacobs</name>
<affiliation>
<nlm:affiliation>Department of Brain & Cognitive Sciences, University of Rochester, Rochester, New York, United States of America.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="doi">10.1371/journal.pcbi.1004610</idno>
<idno type="RBID">pubmed:26554704</idno>
<idno type="pmid">26554704</idno>
<idno type="wicri:Area/PubMed/Corpus">000201</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">From Sensory Signals to Modality-Independent Conceptual Representations: A Probabilistic Language of Thought Approach.</title>
<author>
<name sortKey="Erdogan, Goker" sort="Erdogan, Goker" uniqKey="Erdogan G" first="Goker" last="Erdogan">Goker Erdogan</name>
<affiliation>
<nlm:affiliation>Department of Brain & Cognitive Sciences, University of Rochester, Rochester, New York, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yildirim, Ilker" sort="Yildirim, Ilker" uniqKey="Yildirim I" first="Ilker" last="Yildirim">Ilker Yildirim</name>
<affiliation>
<nlm:affiliation>Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jacobs, Robert A" sort="Jacobs, Robert A" uniqKey="Jacobs R" first="Robert A" last="Jacobs">Robert A. Jacobs</name>
<affiliation>
<nlm:affiliation>Department of Brain & Cognitive Sciences, University of Rochester, Rochester, New York, United States of America.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS computational biology</title>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Computational Biology</term>
<term>Computer Simulation</term>
<term>Humans</term>
<term>Models, Neurological</term>
<term>Perception (physiology)</term>
<term>Photic Stimulation</term>
<term>Touch</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Perception</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Computational Biology</term>
<term>Computer Simulation</term>
<term>Humans</term>
<term>Models, Neurological</term>
<term>Photic Stimulation</term>
<term>Touch</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">People learn modality-independent, conceptual representations from modality-specific sensory signals. Here, we hypothesize that any system that accomplishes this feat will include three components: a representational language for characterizing modality-independent representations, a set of sensory-specific forward models for mapping from modality-independent representations to sensory signals, and an inference algorithm for inverting forward models-that is, an algorithm for using sensory signals to infer modality-independent representations. To evaluate this hypothesis, we instantiate it in the form of a computational model that learns object shape representations from visual and/or haptic signals. The model uses a probabilistic grammar to characterize modality-independent representations of object shape, uses a computer graphics toolkit and a human hand simulator to map from object representations to visual and haptic features, respectively, and uses a Bayesian inference algorithm to infer modality-independent object representations from visual and/or haptic signals. Simulation results show that the model infers identical object representations when an object is viewed, grasped, or both. That is, the model's percepts are modality invariant. We also report the results of an experiment in which different subjects rated the similarity of pairs of objects in different sensory conditions, and show that the model provides a very accurate account of subjects' ratings. Conceptually, this research significantly contributes to our understanding of modality invariance, an important type of perceptual constancy, by demonstrating how modality-independent representations can be acquired and used. Methodologically, it provides an important contribution to cognitive modeling, particularly an emerging probabilistic language-of-thought approach, by showing how symbolic and statistical approaches can be combined in order to understand aspects of human perception.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">26554704</PMID>
<DateCreated>
<Year>2015</Year>
<Month>11</Month>
<Day>11</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>11</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7358</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2015</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>PLoS computational biology</Title>
<ISOAbbreviation>PLoS Comput. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>From Sensory Signals to Modality-Independent Conceptual Representations: A Probabilistic Language of Thought Approach.</ArticleTitle>
<Pagination>
<MedlinePgn>e1004610</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pcbi.1004610</ELocationID>
<Abstract>
<AbstractText>People learn modality-independent, conceptual representations from modality-specific sensory signals. Here, we hypothesize that any system that accomplishes this feat will include three components: a representational language for characterizing modality-independent representations, a set of sensory-specific forward models for mapping from modality-independent representations to sensory signals, and an inference algorithm for inverting forward models-that is, an algorithm for using sensory signals to infer modality-independent representations. To evaluate this hypothesis, we instantiate it in the form of a computational model that learns object shape representations from visual and/or haptic signals. The model uses a probabilistic grammar to characterize modality-independent representations of object shape, uses a computer graphics toolkit and a human hand simulator to map from object representations to visual and haptic features, respectively, and uses a Bayesian inference algorithm to infer modality-independent object representations from visual and/or haptic signals. Simulation results show that the model infers identical object representations when an object is viewed, grasped, or both. That is, the model's percepts are modality invariant. We also report the results of an experiment in which different subjects rated the similarity of pairs of objects in different sensory conditions, and show that the model provides a very accurate account of subjects' ratings. Conceptually, this research significantly contributes to our understanding of modality invariance, an important type of perceptual constancy, by demonstrating how modality-independent representations can be acquired and used. Methodologically, it provides an important contribution to cognitive modeling, particularly an emerging probabilistic language-of-thought approach, by showing how symbolic and statistical approaches can be combined in order to understand aspects of human perception.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Erdogan</LastName>
<ForeName>Goker</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Brain & Cognitive Sciences, University of Rochester, Rochester, New York, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yildirim</LastName>
<ForeName>Ilker</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratory of Neural Systems, The Rockefeller University, New York, New York, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jacobs</LastName>
<ForeName>Robert A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>Department of Brain & Cognitive Sciences, University of Rochester, Rochester, New York, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>11</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Comput Biol</MedlineTA>
<NlmUniqueID>101238922</NlmUniqueID>
<ISSNLinking>1553-734X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2005 Oct;166(3-4):559-71</RefSource>
<PMID Version="1">16028028</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Sci. 2000 Jan;11(1):7-12</RefSource>
<PMID Version="1">11228847</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2006 Jul;10(7):301-8</RefSource>
<PMID Version="1">16784882</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):18014-9</RefSource>
<PMID Version="1">17101989</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Pattern Anal Mach Intell. 2007 Feb;29(2):286-99</RefSource>
<PMID Version="1">17170481</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2007 Feb 1;45(3):484-95</RefSource>
<PMID Version="1">16580027</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Methods. 2007 May 15;162(1-2):8-13</RefSource>
<PMID Version="1">17254636</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2007 Jun;97(6):4203-14</RefSource>
<PMID Version="1">17409174</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2007;2(9):e890</RefSource>
<PMID Version="1">17849019</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Feb 6;28(6):1271-81</RefSource>
<PMID Version="1">18256247</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 2008 Feb;48(4):598-610</RefSource>
<PMID Version="1">18199467</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10687-92</RefSource>
<PMID Version="1">18669663</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neural Comput. 2008 Nov;20(11):2597-628</RefSource>
<PMID Version="1">18533818</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Pattern Anal Mach Intell. 2009 Jan;31(1):114-28</RefSource>
<PMID Version="1">19029550</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol Hum Percept Perform. 2009 Aug;35(4):911-30</RefSource>
<PMID Version="1">19653738</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2009 Aug 11;19(15):1308-13</RefSource>
<PMID Version="1">19631538</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2009 Sep;198(2-3):329-37</RefSource>
<PMID Version="1">19484467</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2009 Sep;198(2-3):165-82</RefSource>
<PMID Version="1">19652959</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2010;10(11):2</RefSource>
<PMID Version="1">20884497</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Rev. 2010 Oct;117(4):1144-67</RefSource>
<PMID Version="1">21038975</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2000 Sep;27(3):647-52</RefSource>
<PMID Version="1">11055445</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychon Bull Rev. 2015 Jun;22(3):673-86</RefSource>
<PMID Version="1">25338656</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Sci. 2001 Jan;12(1):37-42</RefSource>
<PMID Version="1">11294226</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Sci. 1999 Aug;22(4):577-609; discussion 610-60</RefSource>
<PMID Version="1">11301525</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 2001;134:427-45</RefSource>
<PMID Version="1">11702559</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cognition. 2002 Feb;83(1):B1-11</RefSource>
<PMID Version="1">11814488</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2002;40(10):1706-14</RefSource>
<PMID Version="1">11992658</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2002 Jul;3(7):553-62</RefSource>
<PMID Version="1">12094211</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2002 Nov;12(11):1202-12</RefSource>
<PMID Version="1">12379608</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Psychol. 2004;55:271-304</RefSource>
<PMID Version="1">14744217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 2004 Feb;66(2):342-51</RefSource>
<PMID Version="1">15129753</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Bull. 1974 May;81(5):284-310</RefSource>
<PMID Version="1">4608609</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc R Soc Lond B Biol Sci. 1978 Feb 23;200(1140):269-94</RefSource>
<PMID Version="1">24223</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cognition. 1984 Dec;18(1-3):65-96</RefSource>
<PMID Version="1">6543164</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2011 Mar 11;331(6022):1279-85</RefSource>
<PMID Version="1">21393536</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Psychol (Amst). 2011 Sep;138(1):219-30</RefSource>
<PMID Version="1">21752344</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Rev. 1987 Apr;94(2):115-47</RefSource>
<PMID Version="1">3575582</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 1995 May 1;5(5):552-63</RefSource>
<PMID Version="1">7583105</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):12046-50</RefSource>
<PMID Version="1">8876260</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol Learn Mem Cogn. 1997 Jan;23(1):153-63</RefSource>
<PMID Version="1">9028025</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol Hum Percept Perform. 1998 Feb;24(1):227-51</RefSource>
<PMID Version="1">9483827</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 1998 Aug;38(15-16):2365-85</RefSource>
<PMID Version="1">9798005</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1998 Dec 1;18(23):10105-15</RefSource>
<PMID Version="1">9822764</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2012 Jan;216(1):123-34</RefSource>
<PMID Version="1">22048319</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cogn Sci. 2012 Mar;36(2):305-32</RefSource>
<PMID Version="1">22141921</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cognition. 2012 May;123(2):199-217</RefSource>
<PMID Version="1">22284806</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2012 Aug;13(8):587-97</RefSource>
<PMID Version="1">22760181</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cognition. 2013 Feb;126(2):135-48</RefSource>
<PMID Version="1">23102553</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychon Bull Rev. 2014 Aug;21(4):976-85</RefSource>
<PMID Version="1">24307250</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 May 23;103(21):8239-44</RefSource>
<PMID Version="1">16702554</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019295">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D008959">Models, Neurological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010465">Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010775">Photic Stimulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014110">Touch</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4640543</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="ecollection">
<Year>2015</Year>
<Month>11</Month>
<Day></Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>4</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>10</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2015</Year>
<Month>11</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.pcbi.1004610</ArticleId>
<ArticleId IdType="pii">PCOMPBIOL-D-15-00652</ArticleId>
<ArticleId IdType="pubmed">26554704</ArticleId>
<ArticleId IdType="pmc">PMC4640543</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000201 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000201 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26554704
   |texte=   From Sensory Signals to Modality-Independent Conceptual Representations: A Probabilistic Language of Thought Approach.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26554704" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024