Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Six Degree-of-Freedom Haptic Simulation of Probing Dental Caries within a Narrow Oral Cavity.

Identifieur interne : 000093 ( PubMed/Corpus ); précédent : 000092; suivant : 000094

Six Degree-of-Freedom Haptic Simulation of Probing Dental Caries within a Narrow Oral Cavity.

Auteurs : Dangxiao Wang ; Xiaohan Zhao ; Youjiao Shi ; Yuru Zhang ; Jianxia Hou ; Jing Xiao

Source :

RBID : pubmed:26915130

Abstract

Haptic simulation of handling pathological tissues is a crucial component to enhance virtual surgical training systems. In this paper, we introduce a configuration-based optimization approach to simulate the exploration and diagnosis of carious tissues in dental operations. To simulate the six Degree-of-Freedom (6DoF) haptic interaction between the dental probe and the oral tissues, we introduce two interaction states, the sliding state and the penetration state, which simulate the exploration on the surface of and inside of the caries respectively. Penetration criteria considering a contact force threshold are defined to trigger the switch between the two states. By utilizing a simplified friction model based on the optimization approach, various multi-region frictional contacts between the probe and carious tissues are simulated. To simulate the exploration within the carious tissues for diagnosing the depth of the caries, a dynamic sphere tree is used to constrain the insertion/extraction of the probe within carious tissues along a fixed direction while enabling simulation of additional contacts of the probe with neighboring oral tissues during the insertion/extraction process. Experimental results show that decays with different levels of stiffness and friction coefficients can be stably simulated. Preliminary user studies show that users could easily identify the invisible boundary between the decay and healthy tissues and correctly rank the depth of target decays within a required time limit. The proposed approach could be used for training delicate motor skill of probing target carious teeth in a narrow oral cavity, which requires collaborated control of tool posture and insertion/extraction force, while avoiding damages to adjacent healthy tissues of the tongue and gingiva.

DOI: 10.1109/TOH.2016.2531660
PubMed: 26915130

Links to Exploration step

pubmed:26915130

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Six Degree-of-Freedom Haptic Simulation of Probing Dental Caries within a Narrow Oral Cavity.</title>
<author>
<name sortKey="Wang, Dangxiao" sort="Wang, Dangxiao" uniqKey="Wang D" first="Dangxiao" last="Wang">Dangxiao Wang</name>
</author>
<author>
<name sortKey="Zhao, Xiaohan" sort="Zhao, Xiaohan" uniqKey="Zhao X" first="Xiaohan" last="Zhao">Xiaohan Zhao</name>
</author>
<author>
<name sortKey="Shi, Youjiao" sort="Shi, Youjiao" uniqKey="Shi Y" first="Youjiao" last="Shi">Youjiao Shi</name>
</author>
<author>
<name sortKey="Zhang, Yuru" sort="Zhang, Yuru" uniqKey="Zhang Y" first="Yuru" last="Zhang">Yuru Zhang</name>
</author>
<author>
<name sortKey="Hou, Jianxia" sort="Hou, Jianxia" uniqKey="Hou J" first="Jianxia" last="Hou">Jianxia Hou</name>
</author>
<author>
<name sortKey="Xiao, Jing" sort="Xiao, Jing" uniqKey="Xiao J" first="Jing" last="Xiao">Jing Xiao</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="doi">10.1109/TOH.2016.2531660</idno>
<idno type="RBID">pubmed:26915130</idno>
<idno type="pmid">26915130</idno>
<idno type="wicri:Area/PubMed/Corpus">000093</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Six Degree-of-Freedom Haptic Simulation of Probing Dental Caries within a Narrow Oral Cavity.</title>
<author>
<name sortKey="Wang, Dangxiao" sort="Wang, Dangxiao" uniqKey="Wang D" first="Dangxiao" last="Wang">Dangxiao Wang</name>
</author>
<author>
<name sortKey="Zhao, Xiaohan" sort="Zhao, Xiaohan" uniqKey="Zhao X" first="Xiaohan" last="Zhao">Xiaohan Zhao</name>
</author>
<author>
<name sortKey="Shi, Youjiao" sort="Shi, Youjiao" uniqKey="Shi Y" first="Youjiao" last="Shi">Youjiao Shi</name>
</author>
<author>
<name sortKey="Zhang, Yuru" sort="Zhang, Yuru" uniqKey="Zhang Y" first="Yuru" last="Zhang">Yuru Zhang</name>
</author>
<author>
<name sortKey="Hou, Jianxia" sort="Hou, Jianxia" uniqKey="Hou J" first="Jianxia" last="Hou">Jianxia Hou</name>
</author>
<author>
<name sortKey="Xiao, Jing" sort="Xiao, Jing" uniqKey="Xiao J" first="Jing" last="Xiao">Jing Xiao</name>
</author>
</analytic>
<series>
<title level="j">IEEE transactions on haptics</title>
<idno type="eISSN">2329-4051</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Haptic simulation of handling pathological tissues is a crucial component to enhance virtual surgical training systems. In this paper, we introduce a configuration-based optimization approach to simulate the exploration and diagnosis of carious tissues in dental operations. To simulate the six Degree-of-Freedom (6DoF) haptic interaction between the dental probe and the oral tissues, we introduce two interaction states, the sliding state and the penetration state, which simulate the exploration on the surface of and inside of the caries respectively. Penetration criteria considering a contact force threshold are defined to trigger the switch between the two states. By utilizing a simplified friction model based on the optimization approach, various multi-region frictional contacts between the probe and carious tissues are simulated. To simulate the exploration within the carious tissues for diagnosing the depth of the caries, a dynamic sphere tree is used to constrain the insertion/extraction of the probe within carious tissues along a fixed direction while enabling simulation of additional contacts of the probe with neighboring oral tissues during the insertion/extraction process. Experimental results show that decays with different levels of stiffness and friction coefficients can be stably simulated. Preliminary user studies show that users could easily identify the invisible boundary between the decay and healthy tissues and correctly rank the depth of target decays within a required time limit. The proposed approach could be used for training delicate motor skill of probing target carious teeth in a narrow oral cavity, which requires collaborated control of tool posture and insertion/extraction force, while avoiding damages to adjacent healthy tissues of the tongue and gingiva.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">26915130</PMID>
<DateCreated>
<Year>2016</Year>
<Month>2</Month>
<Day>25</Day>
</DateCreated>
<DateRevised>
<Year>2016</Year>
<Month>2</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2329-4051</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2016</Year>
<Month>Feb</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>IEEE transactions on haptics</Title>
<ISOAbbreviation>IEEE Trans Haptics</ISOAbbreviation>
</Journal>
<ArticleTitle>Six Degree-of-Freedom Haptic Simulation of Probing Dental Caries within a Narrow Oral Cavity.</ArticleTitle>
<Pagination>
<MedlinePgn></MedlinePgn>
</Pagination>
<Abstract>
<AbstractText NlmCategory="UNASSIGNED">Haptic simulation of handling pathological tissues is a crucial component to enhance virtual surgical training systems. In this paper, we introduce a configuration-based optimization approach to simulate the exploration and diagnosis of carious tissues in dental operations. To simulate the six Degree-of-Freedom (6DoF) haptic interaction between the dental probe and the oral tissues, we introduce two interaction states, the sliding state and the penetration state, which simulate the exploration on the surface of and inside of the caries respectively. Penetration criteria considering a contact force threshold are defined to trigger the switch between the two states. By utilizing a simplified friction model based on the optimization approach, various multi-region frictional contacts between the probe and carious tissues are simulated. To simulate the exploration within the carious tissues for diagnosing the depth of the caries, a dynamic sphere tree is used to constrain the insertion/extraction of the probe within carious tissues along a fixed direction while enabling simulation of additional contacts of the probe with neighboring oral tissues during the insertion/extraction process. Experimental results show that decays with different levels of stiffness and friction coefficients can be stably simulated. Preliminary user studies show that users could easily identify the invisible boundary between the decay and healthy tissues and correctly rank the depth of target decays within a required time limit. The proposed approach could be used for training delicate motor skill of probing target carious teeth in a narrow oral cavity, which requires collaborated control of tool posture and insertion/extraction force, while avoiding damages to adjacent healthy tissues of the tongue and gingiva.</AbstractText>
</Abstract>
<AuthorList>
<Author>
<LastName>Wang</LastName>
<ForeName>Dangxiao</ForeName>
<Initials>D</Initials>
</Author>
<Author>
<LastName>Zhao</LastName>
<ForeName>Xiaohan</ForeName>
<Initials>X</Initials>
</Author>
<Author>
<LastName>Shi</LastName>
<ForeName>Youjiao</ForeName>
<Initials>Y</Initials>
</Author>
<Author>
<LastName>Zhang</LastName>
<ForeName>Yuru</ForeName>
<Initials>Y</Initials>
</Author>
<Author>
<LastName>Hou</LastName>
<ForeName>Jianxia</ForeName>
<Initials>J</Initials>
</Author>
<Author>
<LastName>Xiao</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>ENG</Language>
<PublicationTypeList>
<PublicationType UI="">JOURNAL ARTICLE</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>2</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<MedlineTA>IEEE Trans Haptics</MedlineTA>
<NlmUniqueID>101491191</NlmUniqueID>
<ISSNLinking>1939-1412</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1109/TOH.2016.2531660</ArticleId>
<ArticleId IdType="pubmed">26915130</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000093 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000093 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26915130
   |texte=   Six Degree-of-Freedom Haptic Simulation of Probing Dental Caries within a Narrow Oral Cavity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26915130" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024