Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.

Identifieur interne : 001B64 ( PubMed/Checkpoint ); précédent : 001B63; suivant : 001B65

Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.

Auteurs : M P Ottensmeyer [États-Unis] ; E. Ben-Ur ; J K Salisbury

Source :

RBID : pubmed:10977548

English descriptors

Abstract

Current efforts in surgical simulation very often focus on creating realistic graphical feedback, but neglect some or all tactile and force (haptic) feedback that a surgeon would normally receive. Simulations that do include haptic feedback do not typically use real tissue compliance properties, favoring estimates and user feedback to determine realism. When tissue compliance data are used, there are virtually no in vivo property measurements to draw upon. Together with the Center for Innovative Minimally Invasive Therapy at the Massachusetts General Hospital, the Haptics Group is developing tools to introduce more comprehensive haptic feedback in laparoscopy simulators and to provide biological tissue material property data for our software simulation. The platform for providing haptic feedback is a PHANToM Haptic Interface, produced by SensAble Technologies, Inc. Our devices supplement the PHANToM to provide for grasping and optionally, for the roll axis of the tool. Together with feedback from the PHANToM, which provides the pitch, yaw and thrust axes of a typical laparoscopy tool, we can recreate all of the haptic sensations experienced during laparoscopy. The devices integrate real laparoscopy toolhandles and a compliant torso model to complete the set of visual and tactile sensations. Biological tissues are known to exhibit non-linear mechanical properties, and change their properties dramatically when removed from a living organism. To measure the properties in vivo, two devices are being developed. The first is a small displacement, 1-D indenter. It will measure the linear tissue compliance (stiffness and damping) over a wide range of frequencies. These data will be used as inputs to a finite element or other model. The second device will be able to deflect tissues in 3-D over a larger range, so that the non-linearities due to changes in the tissue geometry will be measured. This will allow us to validate the performance of the model on large tissue deformations. Both devices are designed to pass through standard 12 mm laparoscopy trocars, and will be suitable for use during open or minimally invasive procedures. We plan to acquire data from pigs used by surgeons for training purposes, but conceivably, the tools could be refined for use on humans undergoing surgery. Our work will provide the necessary data input for surgical simulations to accurately model the force interactions that a surgeon would have with tissue, and will provide the force output to create a truly realistic simulation of minimally invasive surgery.

PubMed: 10977548


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:10977548

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.</title>
<author>
<name sortKey="Ottensmeyer, M P" sort="Ottensmeyer, M P" uniqKey="Ottensmeyer M" first="M P" last="Ottensmeyer">M P Ottensmeyer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Haptics Group, Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Haptics Group, Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ben Ur, E" sort="Ben Ur, E" uniqKey="Ben Ur E" first="E" last="Ben-Ur">E. Ben-Ur</name>
</author>
<author>
<name sortKey="Salisbury, J K" sort="Salisbury, J K" uniqKey="Salisbury J" first="J K" last="Salisbury">J K Salisbury</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2000">2000</date>
<idno type="RBID">pubmed:10977548</idno>
<idno type="pmid">10977548</idno>
<idno type="wicri:Area/PubMed/Corpus">001E22</idno>
<idno type="wicri:Area/PubMed/Curation">001E22</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001B64</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.</title>
<author>
<name sortKey="Ottensmeyer, M P" sort="Ottensmeyer, M P" uniqKey="Ottensmeyer M" first="M P" last="Ottensmeyer">M P Ottensmeyer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Haptics Group, Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Haptics Group, Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ben Ur, E" sort="Ben Ur, E" uniqKey="Ben Ur E" first="E" last="Ben-Ur">E. Ben-Ur</name>
</author>
<author>
<name sortKey="Salisbury, J K" sort="Salisbury, J K" uniqKey="Salisbury J" first="J K" last="Salisbury">J K Salisbury</name>
</author>
</analytic>
<series>
<title level="j">Studies in health technology and informatics</title>
<idno type="ISSN">0926-9630</idno>
<imprint>
<date when="2000" type="published">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer Simulation</term>
<term>Feedback</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Laparoscopy</term>
<term>Phantoms, Imaging</term>
<term>Surgical Instruments</term>
<term>Touch</term>
<term>User-Computer Interface</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Feedback</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Laparoscopy</term>
<term>Phantoms, Imaging</term>
<term>Surgical Instruments</term>
<term>Touch</term>
<term>User-Computer Interface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Current efforts in surgical simulation very often focus on creating realistic graphical feedback, but neglect some or all tactile and force (haptic) feedback that a surgeon would normally receive. Simulations that do include haptic feedback do not typically use real tissue compliance properties, favoring estimates and user feedback to determine realism. When tissue compliance data are used, there are virtually no in vivo property measurements to draw upon. Together with the Center for Innovative Minimally Invasive Therapy at the Massachusetts General Hospital, the Haptics Group is developing tools to introduce more comprehensive haptic feedback in laparoscopy simulators and to provide biological tissue material property data for our software simulation. The platform for providing haptic feedback is a PHANToM Haptic Interface, produced by SensAble Technologies, Inc. Our devices supplement the PHANToM to provide for grasping and optionally, for the roll axis of the tool. Together with feedback from the PHANToM, which provides the pitch, yaw and thrust axes of a typical laparoscopy tool, we can recreate all of the haptic sensations experienced during laparoscopy. The devices integrate real laparoscopy toolhandles and a compliant torso model to complete the set of visual and tactile sensations. Biological tissues are known to exhibit non-linear mechanical properties, and change their properties dramatically when removed from a living organism. To measure the properties in vivo, two devices are being developed. The first is a small displacement, 1-D indenter. It will measure the linear tissue compliance (stiffness and damping) over a wide range of frequencies. These data will be used as inputs to a finite element or other model. The second device will be able to deflect tissues in 3-D over a larger range, so that the non-linearities due to changes in the tissue geometry will be measured. This will allow us to validate the performance of the model on large tissue deformations. Both devices are designed to pass through standard 12 mm laparoscopy trocars, and will be suitable for use during open or minimally invasive procedures. We plan to acquire data from pigs used by surgeons for training purposes, but conceivably, the tools could be refined for use on humans undergoing surgery. Our work will provide the necessary data input for surgical simulations to accurately model the force interactions that a surgeon would have with tissue, and will provide the force output to create a truly realistic simulation of minimally invasive surgery.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">10977548</PMID>
<DateCreated>
<Year>2000</Year>
<Month>08</Month>
<Day>15</Day>
</DateCreated>
<DateCompleted>
<Year>2000</Year>
<Month>08</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2006</Year>
<Month>11</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0926-9630</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>70</Volume>
<PubDate>
<Year>2000</Year>
</PubDate>
</JournalIssue>
<Title>Studies in health technology and informatics</Title>
<ISOAbbreviation>Stud Health Technol Inform</ISOAbbreviation>
</Journal>
<ArticleTitle>Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.</ArticleTitle>
<Pagination>
<MedlinePgn>236-42</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Current efforts in surgical simulation very often focus on creating realistic graphical feedback, but neglect some or all tactile and force (haptic) feedback that a surgeon would normally receive. Simulations that do include haptic feedback do not typically use real tissue compliance properties, favoring estimates and user feedback to determine realism. When tissue compliance data are used, there are virtually no in vivo property measurements to draw upon. Together with the Center for Innovative Minimally Invasive Therapy at the Massachusetts General Hospital, the Haptics Group is developing tools to introduce more comprehensive haptic feedback in laparoscopy simulators and to provide biological tissue material property data for our software simulation. The platform for providing haptic feedback is a PHANToM Haptic Interface, produced by SensAble Technologies, Inc. Our devices supplement the PHANToM to provide for grasping and optionally, for the roll axis of the tool. Together with feedback from the PHANToM, which provides the pitch, yaw and thrust axes of a typical laparoscopy tool, we can recreate all of the haptic sensations experienced during laparoscopy. The devices integrate real laparoscopy toolhandles and a compliant torso model to complete the set of visual and tactile sensations. Biological tissues are known to exhibit non-linear mechanical properties, and change their properties dramatically when removed from a living organism. To measure the properties in vivo, two devices are being developed. The first is a small displacement, 1-D indenter. It will measure the linear tissue compliance (stiffness and damping) over a wide range of frequencies. These data will be used as inputs to a finite element or other model. The second device will be able to deflect tissues in 3-D over a larger range, so that the non-linearities due to changes in the tissue geometry will be measured. This will allow us to validate the performance of the model on large tissue deformations. Both devices are designed to pass through standard 12 mm laparoscopy trocars, and will be suitable for use during open or minimally invasive procedures. We plan to acquire data from pigs used by surgeons for training purposes, but conceivably, the tools could be refined for use on humans undergoing surgery. Our work will provide the necessary data input for surgical simulations to accurately model the force interactions that a surgeon would have with tissue, and will provide the force output to create a truly realistic simulation of minimally invasive surgery.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ottensmeyer</LastName>
<ForeName>M P</ForeName>
<Initials>MP</Initials>
<AffiliationInfo>
<Affiliation>Haptics Group, Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ben-Ur</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Salisbury</LastName>
<ForeName>J K</ForeName>
<Initials>JK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>NETHERLANDS</Country>
<MedlineTA>Stud Health Technol Inform</MedlineTA>
<NlmUniqueID>9214582</NlmUniqueID>
<ISSNLinking>0926-9630</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>T</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005246">Feedback</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007091">Image Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D010535">Laparoscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019047">Phantoms, Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013525">Surgical Instruments</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014110">Touch</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014584">User-Computer Interface</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2000</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2000</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>11</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2000</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10977548</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Ben Ur, E" sort="Ben Ur, E" uniqKey="Ben Ur E" first="E" last="Ben-Ur">E. Ben-Ur</name>
<name sortKey="Salisbury, J K" sort="Salisbury, J K" uniqKey="Salisbury J" first="J K" last="Salisbury">J K Salisbury</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Ottensmeyer, M P" sort="Ottensmeyer, M P" uniqKey="Ottensmeyer M" first="M P" last="Ottensmeyer">M P Ottensmeyer</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B64 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001B64 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:10977548
   |texte=   Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:10977548" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024