Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Humans integrate visual and haptic information in a statistically optimal fashion.

Identifieur interne : 001A11 ( PubMed/Checkpoint ); précédent : 001A10; suivant : 001A12

Humans integrate visual and haptic information in a statistically optimal fashion.

Auteurs : Marc O. Ernst [États-Unis] ; Martin S. Banks

Source :

RBID : pubmed:11807554

English descriptors

Abstract

When a person looks at an object while exploring it with their hand, vision and touch both provide information for estimating the properties of the object. Vision frequently dominates the integrated visual-haptic percept, for example when judging size, shape or position, but in some circumstances the percept is clearly affected by haptics. Here we propose that a general principle, which minimizes variance in the final estimate, determines the degree to which vision or haptics dominates. This principle is realized by using maximum-likelihood estimation to combine the inputs. To investigate cue combination quantitatively, we first measured the variances associated with visual and haptic estimation of height. We then used these measurements to construct a maximum-likelihood integrator. This model behaved very similarly to humans in a visual-haptic task. Thus, the nervous system seems to combine visual and haptic information in a fashion that is similar to a maximum-likelihood integrator. Visual dominance occurs when the variance associated with visual estimation is lower than that associated with haptic estimation.

DOI: 10.1038/415429a
PubMed: 11807554


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:11807554

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Humans integrate visual and haptic information in a statistically optimal fashion.</title>
<author>
<name sortKey="Ernst, Marc O" sort="Ernst, Marc O" uniqKey="Ernst M" first="Marc O" last="Ernst">Marc O. Ernst</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vision Science Program, School of Optometry, University of California, Berkeley 94720-2020, USA. marc.ernst@tuebingen.mpg.de</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Vision Science Program, School of Optometry, University of California, Berkeley 94720-2020</wicri:regionArea>
<placeName>
<settlement type="city">Berkeley (Californie)</settlement>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Banks, Martin S" sort="Banks, Martin S" uniqKey="Banks M" first="Martin S" last="Banks">Martin S. Banks</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:11807554</idno>
<idno type="pmid">11807554</idno>
<idno type="doi">10.1038/415429a</idno>
<idno type="wicri:Area/PubMed/Corpus">001D02</idno>
<idno type="wicri:Area/PubMed/Curation">001D02</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001A11</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Humans integrate visual and haptic information in a statistically optimal fashion.</title>
<author>
<name sortKey="Ernst, Marc O" sort="Ernst, Marc O" uniqKey="Ernst M" first="Marc O" last="Ernst">Marc O. Ernst</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vision Science Program, School of Optometry, University of California, Berkeley 94720-2020, USA. marc.ernst@tuebingen.mpg.de</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Vision Science Program, School of Optometry, University of California, Berkeley 94720-2020</wicri:regionArea>
<placeName>
<settlement type="city">Berkeley (Californie)</settlement>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Banks, Martin S" sort="Banks, Martin S" uniqKey="Banks M" first="Martin S" last="Banks">Martin S. Banks</name>
</author>
</analytic>
<series>
<title level="j">Nature</title>
<idno type="ISSN">0028-0836</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Humans</term>
<term>Models, Neurological</term>
<term>Sensory Thresholds</term>
<term>Size Perception (physiology)</term>
<term>Touch (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Size Perception</term>
<term>Touch</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Humans</term>
<term>Models, Neurological</term>
<term>Sensory Thresholds</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">When a person looks at an object while exploring it with their hand, vision and touch both provide information for estimating the properties of the object. Vision frequently dominates the integrated visual-haptic percept, for example when judging size, shape or position, but in some circumstances the percept is clearly affected by haptics. Here we propose that a general principle, which minimizes variance in the final estimate, determines the degree to which vision or haptics dominates. This principle is realized by using maximum-likelihood estimation to combine the inputs. To investigate cue combination quantitatively, we first measured the variances associated with visual and haptic estimation of height. We then used these measurements to construct a maximum-likelihood integrator. This model behaved very similarly to humans in a visual-haptic task. Thus, the nervous system seems to combine visual and haptic information in a fashion that is similar to a maximum-likelihood integrator. Visual dominance occurs when the variance associated with visual estimation is lower than that associated with haptic estimation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">11807554</PMID>
<DateCreated>
<Year>2002</Year>
<Month>01</Month>
<Day>24</Day>
</DateCreated>
<DateCompleted>
<Year>2002</Year>
<Month>03</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2006</Year>
<Month>11</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0028-0836</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>415</Volume>
<Issue>6870</Issue>
<PubDate>
<Year>2002</Year>
<Month>Jan</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>Nature</Title>
<ISOAbbreviation>Nature</ISOAbbreviation>
</Journal>
<ArticleTitle>Humans integrate visual and haptic information in a statistically optimal fashion.</ArticleTitle>
<Pagination>
<MedlinePgn>429-33</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>When a person looks at an object while exploring it with their hand, vision and touch both provide information for estimating the properties of the object. Vision frequently dominates the integrated visual-haptic percept, for example when judging size, shape or position, but in some circumstances the percept is clearly affected by haptics. Here we propose that a general principle, which minimizes variance in the final estimate, determines the degree to which vision or haptics dominates. This principle is realized by using maximum-likelihood estimation to combine the inputs. To investigate cue combination quantitatively, we first measured the variances associated with visual and haptic estimation of height. We then used these measurements to construct a maximum-likelihood integrator. This model behaved very similarly to humans in a visual-haptic task. Thus, the nervous system seems to combine visual and haptic information in a fashion that is similar to a maximum-likelihood integrator. Visual dominance occurs when the variance associated with visual estimation is lower than that associated with haptic estimation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ernst</LastName>
<ForeName>Marc O</ForeName>
<Initials>MO</Initials>
<AffiliationInfo>
<Affiliation>Vision Science Program, School of Optometry, University of California, Berkeley 94720-2020, USA. marc.ernst@tuebingen.mpg.de</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Banks</LastName>
<ForeName>Martin S</ForeName>
<Initials>MS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nature</MedlineTA>
<NlmUniqueID>0410462</NlmUniqueID>
<ISSNLinking>0028-0836</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008959">Models, Neurological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012684">Sensory Thresholds</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012858">Size Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014110">Touch</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>1</Month>
<Day>25</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>1</Month>
<Day>25</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11807554</ArticleId>
<ArticleId IdType="doi">10.1038/415429a</ArticleId>
<ArticleId IdType="pii">415429a</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
<settlement>
<li>Berkeley (Californie)</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Banks, Martin S" sort="Banks, Martin S" uniqKey="Banks M" first="Martin S" last="Banks">Martin S. Banks</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Ernst, Marc O" sort="Ernst, Marc O" uniqKey="Ernst M" first="Marc O" last="Ernst">Marc O. Ernst</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A11 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001A11 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:11807554
   |texte=   Humans integrate visual and haptic information in a statistically optimal fashion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:11807554" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024