Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.

Identifieur interne : 001162 ( PubMed/Checkpoint ); précédent : 001161; suivant : 001163

Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.

Auteurs : Hadi Mohammadi [Canada] ; Fereshteh Bahramian ; Wankei Wan

Source :

RBID : pubmed:19773193

English descriptors

Abstract

Modeling soft tissue using the finite element method is one of the most challenging areas in the field of biomechanical engineering. To date, many models have been developed to describe heart valve leaflet tissue mechanics, which are accurate to some extent. Nevertheless, there is no comprehensive method to modeling soft tissue mechanics, This is because (1) the degree of anisotropy in the heart valve leaflet changes layer by layer due to a variety of collagen fiber densities and orientations that cannot be taken into account in the model and also (2) a constitutive material model fully describing the mechanical properties of the leaflet structure is not available in the literature. In this framework, we develop a new high-order element using p-type finite element formulation to create anisotropic material properties similar to those of the heart valve leaflet tissue in only one single element. This element also takes the nonlinearity of the leaflet tissue into consideration using a bilinear material model. This new element is composed a two-dimensional finite element in the principal directions of leaflet tissue and a p-type finite element in the direction of thickness. The proposed element is easy to implement, much more efficient than standard elements available in commercial finite element packages. This study is one step towards the modeling of soft tissue mechanics using a meshless finite element approach to be applied in real-time haptic feedback of soft-tissue models in virtual reality simulation.

DOI: 10.1016/j.medengphy.2009.07.012
PubMed: 19773193


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19773193

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.</title>
<author>
<name sortKey="Mohammadi, Hadi" sort="Mohammadi, Hadi" uniqKey="Mohammadi H" first="Hadi" last="Mohammadi">Hadi Mohammadi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario, Canada. hmohamm3@uwo.ca</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bahramian, Fereshteh" sort="Bahramian, Fereshteh" uniqKey="Bahramian F" first="Fereshteh" last="Bahramian">Fereshteh Bahramian</name>
</author>
<author>
<name sortKey="Wan, Wankei" sort="Wan, Wankei" uniqKey="Wan W" first="Wankei" last="Wan">Wankei Wan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="doi">10.1016/j.medengphy.2009.07.012</idno>
<idno type="RBID">pubmed:19773193</idno>
<idno type="pmid">19773193</idno>
<idno type="wicri:Area/PubMed/Corpus">001220</idno>
<idno type="wicri:Area/PubMed/Curation">001220</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001162</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.</title>
<author>
<name sortKey="Mohammadi, Hadi" sort="Mohammadi, Hadi" uniqKey="Mohammadi H" first="Hadi" last="Mohammadi">Hadi Mohammadi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario, Canada. hmohamm3@uwo.ca</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bahramian, Fereshteh" sort="Bahramian, Fereshteh" uniqKey="Bahramian F" first="Fereshteh" last="Bahramian">Fereshteh Bahramian</name>
</author>
<author>
<name sortKey="Wan, Wankei" sort="Wan, Wankei" uniqKey="Wan W" first="Wankei" last="Wan">Wankei Wan</name>
</author>
</analytic>
<series>
<title level="j">Medical engineering & physics</title>
<idno type="eISSN">1873-4030</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Anisotropy</term>
<term>Biomechanical Phenomena</term>
<term>Collagen (chemistry)</term>
<term>Computer Simulation</term>
<term>Finite Element Analysis</term>
<term>Heart Valve Prosthesis</term>
<term>Heart Valves (anatomy & histology)</term>
<term>Heart Valves (physiology)</term>
<term>Models, Anatomic</term>
<term>Models, Cardiovascular</term>
<term>Models, Statistical</term>
<term>Pressure</term>
<term>Stress, Mechanical</term>
<term>Swine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Collagen</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Heart Valves</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Heart Valves</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Anisotropy</term>
<term>Biomechanical Phenomena</term>
<term>Computer Simulation</term>
<term>Finite Element Analysis</term>
<term>Heart Valve Prosthesis</term>
<term>Models, Anatomic</term>
<term>Models, Cardiovascular</term>
<term>Models, Statistical</term>
<term>Pressure</term>
<term>Stress, Mechanical</term>
<term>Swine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Modeling soft tissue using the finite element method is one of the most challenging areas in the field of biomechanical engineering. To date, many models have been developed to describe heart valve leaflet tissue mechanics, which are accurate to some extent. Nevertheless, there is no comprehensive method to modeling soft tissue mechanics, This is because (1) the degree of anisotropy in the heart valve leaflet changes layer by layer due to a variety of collagen fiber densities and orientations that cannot be taken into account in the model and also (2) a constitutive material model fully describing the mechanical properties of the leaflet structure is not available in the literature. In this framework, we develop a new high-order element using p-type finite element formulation to create anisotropic material properties similar to those of the heart valve leaflet tissue in only one single element. This element also takes the nonlinearity of the leaflet tissue into consideration using a bilinear material model. This new element is composed a two-dimensional finite element in the principal directions of leaflet tissue and a p-type finite element in the direction of thickness. The proposed element is easy to implement, much more efficient than standard elements available in commercial finite element packages. This study is one step towards the modeling of soft tissue mechanics using a meshless finite element approach to be applied in real-time haptic feedback of soft-tissue models in virtual reality simulation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">19773193</PMID>
<DateCreated>
<Year>2009</Year>
<Month>11</Month>
<Day>03</Day>
</DateCreated>
<DateCompleted>
<Year>2010</Year>
<Month>01</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-4030</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>31</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2009</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Medical engineering & physics</Title>
<ISOAbbreviation>Med Eng Phys</ISOAbbreviation>
</Journal>
<ArticleTitle>Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.</ArticleTitle>
<Pagination>
<MedlinePgn>1110-7</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.medengphy.2009.07.012</ELocationID>
<Abstract>
<AbstractText>Modeling soft tissue using the finite element method is one of the most challenging areas in the field of biomechanical engineering. To date, many models have been developed to describe heart valve leaflet tissue mechanics, which are accurate to some extent. Nevertheless, there is no comprehensive method to modeling soft tissue mechanics, This is because (1) the degree of anisotropy in the heart valve leaflet changes layer by layer due to a variety of collagen fiber densities and orientations that cannot be taken into account in the model and also (2) a constitutive material model fully describing the mechanical properties of the leaflet structure is not available in the literature. In this framework, we develop a new high-order element using p-type finite element formulation to create anisotropic material properties similar to those of the heart valve leaflet tissue in only one single element. This element also takes the nonlinearity of the leaflet tissue into consideration using a bilinear material model. This new element is composed a two-dimensional finite element in the principal directions of leaflet tissue and a p-type finite element in the direction of thickness. The proposed element is easy to implement, much more efficient than standard elements available in commercial finite element packages. This study is one step towards the modeling of soft tissue mechanics using a meshless finite element approach to be applied in real-time haptic feedback of soft-tissue models in virtual reality simulation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mohammadi</LastName>
<ForeName>Hadi</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario, Canada. hmohamm3@uwo.ca</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bahramian</LastName>
<ForeName>Fereshteh</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wan</LastName>
<ForeName>Wankei</ForeName>
<Initials>W</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>09</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Med Eng Phys</MedlineTA>
<NlmUniqueID>9422753</NlmUniqueID>
<ISSNLinking>1350-4533</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>9007-34-5</RegistryNumber>
<NameOfSubstance UI="D003094">Collagen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016880">Anisotropy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001696">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003094">Collagen</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D020342">Finite Element Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006350">Heart Valve Prosthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006351">Heart Valves</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000033">anatomy & histology</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008953">Models, Anatomic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008955">Models, Cardiovascular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015233">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011312">Pressure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013314">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013552">Swine</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>10</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2009</Year>
<Month>7</Month>
<Day>9</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>7</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2009</Year>
<Month>9</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">S1350-4533(09)00153-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.medengphy.2009.07.012</ArticleId>
<ArticleId IdType="pubmed">19773193</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bahramian, Fereshteh" sort="Bahramian, Fereshteh" uniqKey="Bahramian F" first="Fereshteh" last="Bahramian">Fereshteh Bahramian</name>
<name sortKey="Wan, Wankei" sort="Wan, Wankei" uniqKey="Wan W" first="Wankei" last="Wan">Wankei Wan</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Mohammadi, Hadi" sort="Mohammadi, Hadi" uniqKey="Mohammadi H" first="Hadi" last="Mohammadi">Hadi Mohammadi</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001162 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001162 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:19773193
   |texte=   Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:19773193" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024