Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Relative to direct haptic feedback, remote vibrotactile feedback improves but slows object manipulation.

Identifieur interne : 000E96 ( PubMed/Checkpoint ); précédent : 000E95; suivant : 000E97

Relative to direct haptic feedback, remote vibrotactile feedback improves but slows object manipulation.

Auteurs : Cara E. Stepp [États-Unis] ; Yoky Matsuoka

Source :

RBID : pubmed:21095683

English descriptors

Abstract

Most prosthetic hand users are limited to visual feedback of movement performance. To characterize the benefit of vibrotactile feedback for a task that lacks haptic feedback, a virtual environment was used to experimentally manipulate visual, task-relevant haptic, and remote vibrotactile feedback on simple object manipulation for unimpaired subjects. The combination of visual and remote vibrotactile feedback was compared to visual feedback alone, and to simultaneous visual and direct haptic feedback to represent ideal performance. Visual and vibrotactile feedback resulted in improvement of most performance variables including difficulty ratings relative to visual feedback alone. However addition of sensory cues to visual feedback increased trial times and the increase was steeper for vibrotactile than for haptic feedback. Specifically, during vibrotactile feedback the velocity did not change, but the duration of execution increased due to improved performance, resulting in increased trial times. This result suggests future exploration of performance improvement and execution speed for augmented sensory feedback.

DOI: 10.1109/IEMBS.2010.5626120
PubMed: 21095683


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21095683

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Relative to direct haptic feedback, remote vibrotactile feedback improves but slows object manipulation.</title>
<author>
<name sortKey="Stepp, Cara E" sort="Stepp, Cara E" uniqKey="Stepp C" first="Cara E" last="Stepp">Cara E. Stepp</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departments of Computer Science & Engineering and Rehabilitation Medicine, University of Washington, Seattle, WA 98195, USA. cstepp@alum.mit.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Computer Science & Engineering and Rehabilitation Medicine, University of Washington, Seattle, WA 98195</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Matsuoka, Yoky" sort="Matsuoka, Yoky" uniqKey="Matsuoka Y" first="Yoky" last="Matsuoka">Yoky Matsuoka</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="doi">10.1109/IEMBS.2010.5626120</idno>
<idno type="RBID">pubmed:21095683</idno>
<idno type="pmid">21095683</idno>
<idno type="wicri:Area/PubMed/Corpus">001004</idno>
<idno type="wicri:Area/PubMed/Curation">001004</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000E96</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Relative to direct haptic feedback, remote vibrotactile feedback improves but slows object manipulation.</title>
<author>
<name sortKey="Stepp, Cara E" sort="Stepp, Cara E" uniqKey="Stepp C" first="Cara E" last="Stepp">Cara E. Stepp</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departments of Computer Science & Engineering and Rehabilitation Medicine, University of Washington, Seattle, WA 98195, USA. cstepp@alum.mit.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Computer Science & Engineering and Rehabilitation Medicine, University of Washington, Seattle, WA 98195</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Matsuoka, Yoky" sort="Matsuoka, Yoky" uniqKey="Matsuoka Y" first="Yoky" last="Matsuoka">Yoky Matsuoka</name>
</author>
</analytic>
<series>
<title level="j">Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference</title>
<idno type="ISSN">1557-170X</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Artificial Limbs</term>
<term>Biomechanical Phenomena</term>
<term>Cognition</term>
<term>Equipment Design</term>
<term>Feedback</term>
<term>Feedback, Sensory</term>
<term>Hand</term>
<term>Hand Strength</term>
<term>Humans</term>
<term>Psychomotor Performance</term>
<term>Reaction Time</term>
<term>Robotics</term>
<term>Task Performance and Analysis</term>
<term>Touch</term>
<term>Visual Perception</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Artificial Limbs</term>
<term>Biomechanical Phenomena</term>
<term>Cognition</term>
<term>Equipment Design</term>
<term>Feedback</term>
<term>Feedback, Sensory</term>
<term>Hand</term>
<term>Hand Strength</term>
<term>Humans</term>
<term>Psychomotor Performance</term>
<term>Reaction Time</term>
<term>Robotics</term>
<term>Task Performance and Analysis</term>
<term>Touch</term>
<term>Visual Perception</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Most prosthetic hand users are limited to visual feedback of movement performance. To characterize the benefit of vibrotactile feedback for a task that lacks haptic feedback, a virtual environment was used to experimentally manipulate visual, task-relevant haptic, and remote vibrotactile feedback on simple object manipulation for unimpaired subjects. The combination of visual and remote vibrotactile feedback was compared to visual feedback alone, and to simultaneous visual and direct haptic feedback to represent ideal performance. Visual and vibrotactile feedback resulted in improvement of most performance variables including difficulty ratings relative to visual feedback alone. However addition of sensory cues to visual feedback increased trial times and the increase was steeper for vibrotactile than for haptic feedback. Specifically, during vibrotactile feedback the velocity did not change, but the duration of execution increased due to improved performance, resulting in increased trial times. This result suggests future exploration of performance improvement and execution speed for augmented sensory feedback.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">21095683</PMID>
<DateCreated>
<Year>2010</Year>
<Month>11</Month>
<Day>24</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>03</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>08</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1557-170X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>2010</Volume>
<PubDate>
<Year>2010</Year>
</PubDate>
</JournalIssue>
<Title>Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference</Title>
<ISOAbbreviation>Conf Proc IEEE Eng Med Biol Soc</ISOAbbreviation>
</Journal>
<ArticleTitle>Relative to direct haptic feedback, remote vibrotactile feedback improves but slows object manipulation.</ArticleTitle>
<Pagination>
<MedlinePgn>2089-92</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1109/IEMBS.2010.5626120</ELocationID>
<Abstract>
<AbstractText>Most prosthetic hand users are limited to visual feedback of movement performance. To characterize the benefit of vibrotactile feedback for a task that lacks haptic feedback, a virtual environment was used to experimentally manipulate visual, task-relevant haptic, and remote vibrotactile feedback on simple object manipulation for unimpaired subjects. The combination of visual and remote vibrotactile feedback was compared to visual feedback alone, and to simultaneous visual and direct haptic feedback to represent ideal performance. Visual and vibrotactile feedback resulted in improvement of most performance variables including difficulty ratings relative to visual feedback alone. However addition of sensory cues to visual feedback increased trial times and the increase was steeper for vibrotactile than for haptic feedback. Specifically, during vibrotactile feedback the velocity did not change, but the duration of execution increased due to improved performance, resulting in increased trial times. This result suggests future exploration of performance improvement and execution speed for augmented sensory feedback.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Stepp</LastName>
<ForeName>Cara E</ForeName>
<Initials>CE</Initials>
<AffiliationInfo>
<Affiliation>Departments of Computer Science & Engineering and Rehabilitation Medicine, University of Washington, Seattle, WA 98195, USA. cstepp@alum.mit.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matsuoka</LastName>
<ForeName>Yoky</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Conf Proc IEEE Eng Med Biol Soc</MedlineTA>
<NlmUniqueID>101243413</NlmUniqueID>
<ISSNLinking>1557-170X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D001186">Artificial Limbs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001696">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003071">Cognition</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D005246">Feedback</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D056228">Feedback, Sensory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006225">Hand</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018737">Hand Strength</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D011597">Psychomotor Performance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011930">Reaction Time</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012371">Robotics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013647">Task Performance and Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014110">Touch</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014796">Visual Perception</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>11</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>11</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1109/IEMBS.2010.5626120</ArticleId>
<ArticleId IdType="pubmed">21095683</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Matsuoka, Yoky" sort="Matsuoka, Yoky" uniqKey="Matsuoka Y" first="Yoky" last="Matsuoka">Yoky Matsuoka</name>
</noCountry>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Stepp, Cara E" sort="Stepp, Cara E" uniqKey="Stepp C" first="Cara E" last="Stepp">Cara E. Stepp</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E96 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000E96 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:21095683
   |texte=   Relative to direct haptic feedback, remote vibrotactile feedback improves but slows object manipulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:21095683" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024