Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Simulating plastic surgery: from human skin tensile tests, through hyperelastic finite element models to real-time haptics.

Identifieur interne : 000E84 ( PubMed/Checkpoint ); précédent : 000E83; suivant : 000E85

Simulating plastic surgery: from human skin tensile tests, through hyperelastic finite element models to real-time haptics.

Auteurs : R J Lapeer [Royaume-Uni] ; P D Gasson ; V. Karri

Source :

RBID : pubmed:20869388

English descriptors

Abstract

In this paper, we provide a summary of a number of experiments we conducted to arrive at a prototype real-time simulator for plastic surgical interventions such as skin flap repair and inguinal herniotomy. We started our research with a series of in-vitro tensile stress tests on human skin, harvested from female patients undergoing plastic reconstructive surgery. We then used the acquired stress-strain data to fit hyperelastic models. Three models were considered: General Polynomial, Reduced Polynomial and Ogden. Only Reduced Polynomial models were found to be stable, hence they progressed to the next stage to be used in an explicit finite element model aimed at real-time performance in conjunction with a haptic feedback device. A total Lagrangian formulation with the half-step central difference method was employed to integrate the dynamic equation of motion of the mesh. The mesh was integrated into two versions of a real-time skin simulator: a single-threaded version running on a computer's main central processing unit and a multi-threaded version running on the computer's graphics card. The latter was achieved by exploiting recent advances in programmable graphics technology.

DOI: 10.1016/j.pbiomolbio.2010.09.013
PubMed: 20869388


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:20869388

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Simulating plastic surgery: from human skin tensile tests, through hyperelastic finite element models to real-time haptics.</title>
<author>
<name sortKey="Lapeer, R J" sort="Lapeer, R J" uniqKey="Lapeer R" first="R J" last="Lapeer">R J Lapeer</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Computing Sciences, University of East Anglia, Norwich NR47TJ, UK. rjal@mp.uea.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Computing Sciences, University of East Anglia, Norwich NR47TJ</wicri:regionArea>
<wicri:noRegion>Norwich NR47TJ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gasson, P D" sort="Gasson, P D" uniqKey="Gasson P" first="P D" last="Gasson">P D Gasson</name>
</author>
<author>
<name sortKey="Karri, V" sort="Karri, V" uniqKey="Karri V" first="V" last="Karri">V. Karri</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="doi">10.1016/j.pbiomolbio.2010.09.013</idno>
<idno type="RBID">pubmed:20869388</idno>
<idno type="pmid">20869388</idno>
<idno type="wicri:Area/PubMed/Corpus">001030</idno>
<idno type="wicri:Area/PubMed/Curation">001030</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000E84</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Simulating plastic surgery: from human skin tensile tests, through hyperelastic finite element models to real-time haptics.</title>
<author>
<name sortKey="Lapeer, R J" sort="Lapeer, R J" uniqKey="Lapeer R" first="R J" last="Lapeer">R J Lapeer</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Computing Sciences, University of East Anglia, Norwich NR47TJ, UK. rjal@mp.uea.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Computing Sciences, University of East Anglia, Norwich NR47TJ</wicri:regionArea>
<wicri:noRegion>Norwich NR47TJ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gasson, P D" sort="Gasson, P D" uniqKey="Gasson P" first="P D" last="Gasson">P D Gasson</name>
</author>
<author>
<name sortKey="Karri, V" sort="Karri, V" uniqKey="Karri V" first="V" last="Karri">V. Karri</name>
</author>
</analytic>
<series>
<title level="j">Progress in biophysics and molecular biology</title>
<idno type="eISSN">1873-1732</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abdominal Wall (pathology)</term>
<term>Abdominal Wall (surgery)</term>
<term>Algorithms</term>
<term>Computer Graphics</term>
<term>Computer Simulation</term>
<term>Dermatologic Surgical Procedures</term>
<term>Elasticity</term>
<term>Female</term>
<term>Finite Element Analysis</term>
<term>Humans</term>
<term>Middle Aged</term>
<term>Models, Biological</term>
<term>Skin (pathology)</term>
<term>Surgery, Plastic (instrumentation)</term>
<term>Surgery, Plastic (methods)</term>
<term>Tensile Strength</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Surgery, Plastic</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Surgery, Plastic</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Abdominal Wall</term>
<term>Skin</term>
</keywords>
<keywords scheme="MESH" qualifier="surgery" xml:lang="en">
<term>Abdominal Wall</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Computer Graphics</term>
<term>Computer Simulation</term>
<term>Dermatologic Surgical Procedures</term>
<term>Elasticity</term>
<term>Female</term>
<term>Finite Element Analysis</term>
<term>Humans</term>
<term>Middle Aged</term>
<term>Models, Biological</term>
<term>Tensile Strength</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, we provide a summary of a number of experiments we conducted to arrive at a prototype real-time simulator for plastic surgical interventions such as skin flap repair and inguinal herniotomy. We started our research with a series of in-vitro tensile stress tests on human skin, harvested from female patients undergoing plastic reconstructive surgery. We then used the acquired stress-strain data to fit hyperelastic models. Three models were considered: General Polynomial, Reduced Polynomial and Ogden. Only Reduced Polynomial models were found to be stable, hence they progressed to the next stage to be used in an explicit finite element model aimed at real-time performance in conjunction with a haptic feedback device. A total Lagrangian formulation with the half-step central difference method was employed to integrate the dynamic equation of motion of the mesh. The mesh was integrated into two versions of a real-time skin simulator: a single-threaded version running on a computer's main central processing unit and a multi-threaded version running on the computer's graphics card. The latter was achieved by exploiting recent advances in programmable graphics technology.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">20869388</PMID>
<DateCreated>
<Year>2010</Year>
<Month>12</Month>
<Day>06</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>03</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2012</Year>
<Month>11</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-1732</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>103</Volume>
<Issue>2-3</Issue>
<PubDate>
<Year>2010</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Progress in biophysics and molecular biology</Title>
<ISOAbbreviation>Prog. Biophys. Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Simulating plastic surgery: from human skin tensile tests, through hyperelastic finite element models to real-time haptics.</ArticleTitle>
<Pagination>
<MedlinePgn>208-16</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.pbiomolbio.2010.09.013</ELocationID>
<Abstract>
<AbstractText>In this paper, we provide a summary of a number of experiments we conducted to arrive at a prototype real-time simulator for plastic surgical interventions such as skin flap repair and inguinal herniotomy. We started our research with a series of in-vitro tensile stress tests on human skin, harvested from female patients undergoing plastic reconstructive surgery. We then used the acquired stress-strain data to fit hyperelastic models. Three models were considered: General Polynomial, Reduced Polynomial and Ogden. Only Reduced Polynomial models were found to be stable, hence they progressed to the next stage to be used in an explicit finite element model aimed at real-time performance in conjunction with a haptic feedback device. A total Lagrangian formulation with the half-step central difference method was employed to integrate the dynamic equation of motion of the mesh. The mesh was integrated into two versions of a real-time skin simulator: a single-threaded version running on a computer's main central processing unit and a multi-threaded version running on the computer's graphics card. The latter was achieved by exploiting recent advances in programmable graphics technology.</AbstractText>
<CopyrightInformation>Copyright © 2010. Published by Elsevier Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lapeer</LastName>
<ForeName>R J</ForeName>
<Initials>RJ</Initials>
<AffiliationInfo>
<Affiliation>School of Computing Sciences, University of East Anglia, Norwich NR47TJ, UK. rjal@mp.uea.ac.uk</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gasson</LastName>
<ForeName>P D</ForeName>
<Initials>PD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Karri</LastName>
<ForeName>V</ForeName>
<Initials>V</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>09</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Prog Biophys Mol Biol</MedlineTA>
<NlmUniqueID>0401233</NlmUniqueID>
<ISSNLinking>0079-6107</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D034861">Abdominal Wall</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000473">pathology</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000601">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003196">Computer Graphics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D062109">Dermatologic Surgical Procedures</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004548">Elasticity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D020342">Finite Element Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008875">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D008954">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012867">Skin</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000473">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013518">Surgery, Plastic</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013718">Tensile Strength</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>2</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2010</Year>
<Month>8</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>9</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2010</Year>
<Month>9</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">S0079-6107(10)00081-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.pbiomolbio.2010.09.013</ArticleId>
<ArticleId IdType="pubmed">20869388</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Gasson, P D" sort="Gasson, P D" uniqKey="Gasson P" first="P D" last="Gasson">P D Gasson</name>
<name sortKey="Karri, V" sort="Karri, V" uniqKey="Karri V" first="V" last="Karri">V. Karri</name>
</noCountry>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Lapeer, R J" sort="Lapeer, R J" uniqKey="Lapeer R" first="R J" last="Lapeer">R J Lapeer</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E84 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000E84 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:20869388
   |texte=   Simulating plastic surgery: from human skin tensile tests, through hyperelastic finite element models to real-time haptics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:20869388" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024