Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Flow sensing by pinniped whiskers.

Identifieur interne : 000D69 ( PubMed/Checkpoint ); précédent : 000D68; suivant : 000D70

Flow sensing by pinniped whiskers.

Auteurs : L. Miersch [Allemagne] ; W. Hanke ; S. Wieskotten ; F D Hanke ; J. Oeffner ; A. Leder ; M. Brede ; M. Witte ; G. Dehnhardt

Source :

RBID : pubmed:21969689

English descriptors

Abstract

Beside their haptic function, vibrissae of harbour seals (Phocidae) and California sea lions (Otariidae) both represent highly sensitive hydrodynamic receptor systems, although their vibrissal hair shafts differ considerably in structure. To quantify the sensory performance of both hair types, isolated single whiskers were used to measure vortex shedding frequencies produced in the wake of a cylinder immersed in a rotational flow tank. These measurements revealed that both whisker types were able to detect the vortex shedding frequency but differed considerably with respect to the signal-to-noise ratio (SNR). While the signal detected by sea lion whiskers was substantially corrupted by noise, harbour seal whiskers showed a higher SNR with largely reduced noise. However, further analysis revealed that in sea lion whiskers, each noise signal contained a dominant frequency suggested to function as a characteristic carrier signal. While in harbour seal whiskers the unique surface structure explains its high sensitivity, this more or less steady fundamental frequency might represent the mechanism underlying hydrodynamic reception in the fast swimming sea lion by being modulated in response to hydrodynamic stimuli impinging on the hair.

DOI: 10.1098/rstb.2011.0155
PubMed: 21969689


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21969689

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Flow sensing by pinniped whiskers.</title>
<author>
<name sortKey="Miersch, L" sort="Miersch, L" uniqKey="Miersch L" first="L" last="Miersch">L. Miersch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences, Sensory and Cognitive Ecology, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Biosciences, Sensory and Cognitive Ecology, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock</wicri:regionArea>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hanke, W" sort="Hanke, W" uniqKey="Hanke W" first="W" last="Hanke">W. Hanke</name>
</author>
<author>
<name sortKey="Wieskotten, S" sort="Wieskotten, S" uniqKey="Wieskotten S" first="S" last="Wieskotten">S. Wieskotten</name>
</author>
<author>
<name sortKey="Hanke, F D" sort="Hanke, F D" uniqKey="Hanke F" first="F D" last="Hanke">F D Hanke</name>
</author>
<author>
<name sortKey="Oeffner, J" sort="Oeffner, J" uniqKey="Oeffner J" first="J" last="Oeffner">J. Oeffner</name>
</author>
<author>
<name sortKey="Leder, A" sort="Leder, A" uniqKey="Leder A" first="A" last="Leder">A. Leder</name>
</author>
<author>
<name sortKey="Brede, M" sort="Brede, M" uniqKey="Brede M" first="M" last="Brede">M. Brede</name>
</author>
<author>
<name sortKey="Witte, M" sort="Witte, M" uniqKey="Witte M" first="M" last="Witte">M. Witte</name>
</author>
<author>
<name sortKey="Dehnhardt, G" sort="Dehnhardt, G" uniqKey="Dehnhardt G" first="G" last="Dehnhardt">G. Dehnhardt</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="doi">10.1098/rstb.2011.0155</idno>
<idno type="RBID">pubmed:21969689</idno>
<idno type="pmid">21969689</idno>
<idno type="wicri:Area/PubMed/Corpus">000E02</idno>
<idno type="wicri:Area/PubMed/Curation">000E02</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000D69</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Flow sensing by pinniped whiskers.</title>
<author>
<name sortKey="Miersch, L" sort="Miersch, L" uniqKey="Miersch L" first="L" last="Miersch">L. Miersch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences, Sensory and Cognitive Ecology, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Biosciences, Sensory and Cognitive Ecology, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock</wicri:regionArea>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hanke, W" sort="Hanke, W" uniqKey="Hanke W" first="W" last="Hanke">W. Hanke</name>
</author>
<author>
<name sortKey="Wieskotten, S" sort="Wieskotten, S" uniqKey="Wieskotten S" first="S" last="Wieskotten">S. Wieskotten</name>
</author>
<author>
<name sortKey="Hanke, F D" sort="Hanke, F D" uniqKey="Hanke F" first="F D" last="Hanke">F D Hanke</name>
</author>
<author>
<name sortKey="Oeffner, J" sort="Oeffner, J" uniqKey="Oeffner J" first="J" last="Oeffner">J. Oeffner</name>
</author>
<author>
<name sortKey="Leder, A" sort="Leder, A" uniqKey="Leder A" first="A" last="Leder">A. Leder</name>
</author>
<author>
<name sortKey="Brede, M" sort="Brede, M" uniqKey="Brede M" first="M" last="Brede">M. Brede</name>
</author>
<author>
<name sortKey="Witte, M" sort="Witte, M" uniqKey="Witte M" first="M" last="Witte">M. Witte</name>
</author>
<author>
<name sortKey="Dehnhardt, G" sort="Dehnhardt, G" uniqKey="Dehnhardt G" first="G" last="Dehnhardt">G. Dehnhardt</name>
</author>
</analytic>
<series>
<title level="j">Philosophical transactions of the Royal Society of London. Series B, Biological sciences</title>
<idno type="eISSN">1471-2970</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Hydrodynamics</term>
<term>Pinnipedia (anatomy & histology)</term>
<term>Pinnipedia (physiology)</term>
<term>Signal-To-Noise Ratio</term>
<term>Touch (physiology)</term>
<term>Vibrissae (anatomy & histology)</term>
<term>Vibrissae (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Pinnipedia</term>
<term>Vibrissae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Pinnipedia</term>
<term>Touch</term>
<term>Vibrissae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Hydrodynamics</term>
<term>Signal-To-Noise Ratio</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Beside their haptic function, vibrissae of harbour seals (Phocidae) and California sea lions (Otariidae) both represent highly sensitive hydrodynamic receptor systems, although their vibrissal hair shafts differ considerably in structure. To quantify the sensory performance of both hair types, isolated single whiskers were used to measure vortex shedding frequencies produced in the wake of a cylinder immersed in a rotational flow tank. These measurements revealed that both whisker types were able to detect the vortex shedding frequency but differed considerably with respect to the signal-to-noise ratio (SNR). While the signal detected by sea lion whiskers was substantially corrupted by noise, harbour seal whiskers showed a higher SNR with largely reduced noise. However, further analysis revealed that in sea lion whiskers, each noise signal contained a dominant frequency suggested to function as a characteristic carrier signal. While in harbour seal whiskers the unique surface structure explains its high sensitivity, this more or less steady fundamental frequency might represent the mechanism underlying hydrodynamic reception in the fast swimming sea lion by being modulated in response to hydrodynamic stimuli impinging on the hair.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">21969689</PMID>
<DateCreated>
<Year>2011</Year>
<Month>10</Month>
<Day>04</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>04</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>01</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1471-2970</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>366</Volume>
<Issue>1581</Issue>
<PubDate>
<Year>2011</Year>
<Month>Nov</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</Title>
<ISOAbbreviation>Philos. Trans. R. Soc. Lond., B, Biol. Sci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Flow sensing by pinniped whiskers.</ArticleTitle>
<Pagination>
<MedlinePgn>3077-84</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rstb.2011.0155</ELocationID>
<Abstract>
<AbstractText>Beside their haptic function, vibrissae of harbour seals (Phocidae) and California sea lions (Otariidae) both represent highly sensitive hydrodynamic receptor systems, although their vibrissal hair shafts differ considerably in structure. To quantify the sensory performance of both hair types, isolated single whiskers were used to measure vortex shedding frequencies produced in the wake of a cylinder immersed in a rotational flow tank. These measurements revealed that both whisker types were able to detect the vortex shedding frequency but differed considerably with respect to the signal-to-noise ratio (SNR). While the signal detected by sea lion whiskers was substantially corrupted by noise, harbour seal whiskers showed a higher SNR with largely reduced noise. However, further analysis revealed that in sea lion whiskers, each noise signal contained a dominant frequency suggested to function as a characteristic carrier signal. While in harbour seal whiskers the unique surface structure explains its high sensitivity, this more or less steady fundamental frequency might represent the mechanism underlying hydrodynamic reception in the fast swimming sea lion by being modulated in response to hydrodynamic stimuli impinging on the hair.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Miersch</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Biosciences, Sensory and Cognitive Ecology, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hanke</LastName>
<ForeName>W</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wieskotten</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hanke</LastName>
<ForeName>F D</ForeName>
<Initials>FD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oeffner</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Leder</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brede</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Witte</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dehnhardt</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Philos Trans R Soc Lond B Biol Sci</MedlineTA>
<NlmUniqueID>7503623</NlmUniqueID>
<ISSNLinking>0962-8436</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Cogn Psychol. 1987 Jul;19(3):342-68</RefSource>
<PMID Version="1">3608405</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Morphol. 1985 Feb;183(2):199-217</RefSource>
<PMID Version="1">3973927</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol A. 1994 Dec;175(6):791-800</RefSource>
<PMID Version="1">7807420</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1995 Jul 10;357(4):501-12</RefSource>
<PMID Version="1">7673481</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 1995 Nov;198(Pt 11):2317-23</RefSource>
<PMID Version="1">7490570</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 1998 Nov;201(Pt 22):3023-9</RefSource>
<PMID Version="1">9787122</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 2006 May;46(11):1777-83</RefSource>
<PMID Version="1">16197975</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2006 Oct 5;443(7111):525</RefSource>
<PMID Version="1">17024083</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2007 Jan;210(Pt 2):325-39</RefSource>
<PMID Version="1">17210968</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2007 Mar;210(Pt 5):781-7</RefSource>
<PMID Version="1">17297138</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2007 Sep;210(Pt 18):3285-94</RefSource>
<PMID Version="1">17766306</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2008 Jan;211(Pt 2):187-95</RefSource>
<PMID Version="1">18165246</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2008 Jun;211(Pt 11):1714-8</RefSource>
<PMID Version="1">18490386</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009 Jul;195(7):643-50</RefSource>
<PMID Version="1">19360415</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2010 Jul 1;213(Pt 13):2194-200</RefSource>
<PMID Version="1">20543117</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2010 Aug 1;213(Pt 15):2665-72</RefSource>
<PMID Version="1">20639428</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2010 Nov 1;213(Pt 21):3734-40</RefSource>
<PMID Version="1">20952623</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 Feb;197(2):141-51</RefSource>
<PMID Version="1">20959994</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 Feb;197(2):203-10</RefSource>
<PMID Version="1">20981455</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2009 Dec;199(3-4):299-311</RefSource>
<PMID Version="1">19396435</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2011 Jun 1;214(Pt 11):1922-30</RefSource>
<PMID Version="1">21562180</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2000 Apr;203(Pt 7):1193-200</RefSource>
<PMID Version="1">10708639</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2001 Jul 6;293(5527):102-4</RefSource>
<PMID Version="1">11441183</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2002 Jun;205(Pt 12):1709-24</RefSource>
<PMID Version="1">12042330</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 2002 Jul 22;449(2):103-19</RefSource>
<PMID Version="1">12115682</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2002 Nov;205(Pt 21):3271-9</RefSource>
<PMID Version="1">12324537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Acoust Soc Am. 2004 Feb;115(2):901-9</RefSource>
<PMID Version="1">15000201</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2004 Apr;207(Pt 9):1585-96</RefSource>
<PMID Version="1">15037652</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1975 May;38(3):650-62</RefSource>
<PMID Version="1">1127461</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 1982 Apr;97:169-78</RefSource>
<PMID Version="1">7086338</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1990 Aug;10(8):2638-48</RefSource>
<PMID Version="1">2388081</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D057446">Hydrodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010872">Pinnipedia</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000033">anatomy & histology</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D059629">Signal-To-Noise Ratio</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014110">Touch</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014738">Vibrissae</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000033">anatomy & histology</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3172597</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">366/1581/3077</ArticleId>
<ArticleId IdType="doi">10.1098/rstb.2011.0155</ArticleId>
<ArticleId IdType="pubmed">21969689</ArticleId>
<ArticleId IdType="pmc">PMC3172597</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Brede, M" sort="Brede, M" uniqKey="Brede M" first="M" last="Brede">M. Brede</name>
<name sortKey="Dehnhardt, G" sort="Dehnhardt, G" uniqKey="Dehnhardt G" first="G" last="Dehnhardt">G. Dehnhardt</name>
<name sortKey="Hanke, F D" sort="Hanke, F D" uniqKey="Hanke F" first="F D" last="Hanke">F D Hanke</name>
<name sortKey="Hanke, W" sort="Hanke, W" uniqKey="Hanke W" first="W" last="Hanke">W. Hanke</name>
<name sortKey="Leder, A" sort="Leder, A" uniqKey="Leder A" first="A" last="Leder">A. Leder</name>
<name sortKey="Oeffner, J" sort="Oeffner, J" uniqKey="Oeffner J" first="J" last="Oeffner">J. Oeffner</name>
<name sortKey="Wieskotten, S" sort="Wieskotten, S" uniqKey="Wieskotten S" first="S" last="Wieskotten">S. Wieskotten</name>
<name sortKey="Witte, M" sort="Witte, M" uniqKey="Witte M" first="M" last="Witte">M. Witte</name>
</noCountry>
<country name="Allemagne">
<noRegion>
<name sortKey="Miersch, L" sort="Miersch, L" uniqKey="Miersch L" first="L" last="Miersch">L. Miersch</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D69 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000D69 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:21969689
   |texte=   Flow sensing by pinniped whiskers.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:21969689" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024