Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Development of visuo-auditory integration in space and time.

Identifieur interne : 000B60 ( PubMed/Checkpoint ); précédent : 000B59; suivant : 000B61

Development of visuo-auditory integration in space and time.

Auteurs : Monica Gori [Italie] ; Giulio Sandini ; David Burr

Source :

RBID : pubmed:23060759

Abstract

Adults integrate multisensory information optimally (e.g., Ernst and Banks, 2002) while children do not integrate multisensory visual-haptic cues until 8-10 years of age (e.g., Gori et al., 2008). Before that age strong unisensory dominance occurs for size and orientation visual-haptic judgments, possibly reflecting a process of cross-sensory calibration between modalities. It is widely recognized that audition dominates time perception, while vision dominates space perception. Within the framework of the cross-sensory calibration hypothesis, we investigate visual-auditory integration in both space and time with child-friendly spatial and temporal bisection tasks. Unimodal and bimodal (conflictual and not) audio-visual thresholds and PSEs were measured and compared with the Bayesian predictions. In the temporal domain, we found that both in children and adults, audition dominates the bimodal visuo-auditory task both in perceived time and precision thresholds. On the contrary, in the visual-auditory spatial task, children younger than 12 years of age show clear visual dominance (for PSEs), and bimodal thresholds higher than the Bayesian prediction. Only in the adult group did bimodal thresholds become optimal. In agreement with previous studies, our results suggest that also visual-auditory adult-like behavior develops late. We suggest that the visual dominance for space and the auditory dominance for time could reflect a cross-sensory comparison of vision in the spatial visuo-audio task and a cross-sensory comparison of audition in the temporal visuo-audio task.

DOI: 10.3389/fnint.2012.00077
PubMed: 23060759


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23060759

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Development of visuo-auditory integration in space and time.</title>
<author>
<name sortKey="Gori, Monica" sort="Gori, Monica" uniqKey="Gori M" first="Monica" last="Gori">Monica Gori</name>
<affiliation wicri:level="1">
<nlm:affiliation>Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia Genoa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia Genoa</wicri:regionArea>
<wicri:noRegion>Istituto Italiano di Tecnologia Genoa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sandini, Giulio" sort="Sandini, Giulio" uniqKey="Sandini G" first="Giulio" last="Sandini">Giulio Sandini</name>
</author>
<author>
<name sortKey="Burr, David" sort="Burr, David" uniqKey="Burr D" first="David" last="Burr">David Burr</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="doi">10.3389/fnint.2012.00077</idno>
<idno type="RBID">pubmed:23060759</idno>
<idno type="pmid">23060759</idno>
<idno type="wicri:Area/PubMed/Corpus">000B18</idno>
<idno type="wicri:Area/PubMed/Curation">000B18</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000B60</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Development of visuo-auditory integration in space and time.</title>
<author>
<name sortKey="Gori, Monica" sort="Gori, Monica" uniqKey="Gori M" first="Monica" last="Gori">Monica Gori</name>
<affiliation wicri:level="1">
<nlm:affiliation>Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia Genoa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia Genoa</wicri:regionArea>
<wicri:noRegion>Istituto Italiano di Tecnologia Genoa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sandini, Giulio" sort="Sandini, Giulio" uniqKey="Sandini G" first="Giulio" last="Sandini">Giulio Sandini</name>
</author>
<author>
<name sortKey="Burr, David" sort="Burr, David" uniqKey="Burr D" first="David" last="Burr">David Burr</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in integrative neuroscience</title>
<idno type="eISSN">1662-5145</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Adults integrate multisensory information optimally (e.g., Ernst and Banks, 2002) while children do not integrate multisensory visual-haptic cues until 8-10 years of age (e.g., Gori et al., 2008). Before that age strong unisensory dominance occurs for size and orientation visual-haptic judgments, possibly reflecting a process of cross-sensory calibration between modalities. It is widely recognized that audition dominates time perception, while vision dominates space perception. Within the framework of the cross-sensory calibration hypothesis, we investigate visual-auditory integration in both space and time with child-friendly spatial and temporal bisection tasks. Unimodal and bimodal (conflictual and not) audio-visual thresholds and PSEs were measured and compared with the Bayesian predictions. In the temporal domain, we found that both in children and adults, audition dominates the bimodal visuo-auditory task both in perceived time and precision thresholds. On the contrary, in the visual-auditory spatial task, children younger than 12 years of age show clear visual dominance (for PSEs), and bimodal thresholds higher than the Bayesian prediction. Only in the adult group did bimodal thresholds become optimal. In agreement with previous studies, our results suggest that also visual-auditory adult-like behavior develops late. We suggest that the visual dominance for space and the auditory dominance for time could reflect a cross-sensory comparison of vision in the spatial visuo-audio task and a cross-sensory comparison of audition in the temporal visuo-audio task.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">23060759</PMID>
<DateCreated>
<Year>2012</Year>
<Month>10</Month>
<Day>12</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>10</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>08</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1662-5145</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in integrative neuroscience</Title>
<ISOAbbreviation>Front Integr Neurosci</ISOAbbreviation>
</Journal>
<ArticleTitle>Development of visuo-auditory integration in space and time.</ArticleTitle>
<Pagination>
<MedlinePgn>77</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fnint.2012.00077</ELocationID>
<Abstract>
<AbstractText>Adults integrate multisensory information optimally (e.g., Ernst and Banks, 2002) while children do not integrate multisensory visual-haptic cues until 8-10 years of age (e.g., Gori et al., 2008). Before that age strong unisensory dominance occurs for size and orientation visual-haptic judgments, possibly reflecting a process of cross-sensory calibration between modalities. It is widely recognized that audition dominates time perception, while vision dominates space perception. Within the framework of the cross-sensory calibration hypothesis, we investigate visual-auditory integration in both space and time with child-friendly spatial and temporal bisection tasks. Unimodal and bimodal (conflictual and not) audio-visual thresholds and PSEs were measured and compared with the Bayesian predictions. In the temporal domain, we found that both in children and adults, audition dominates the bimodal visuo-auditory task both in perceived time and precision thresholds. On the contrary, in the visual-auditory spatial task, children younger than 12 years of age show clear visual dominance (for PSEs), and bimodal thresholds higher than the Bayesian prediction. Only in the adult group did bimodal thresholds become optimal. In agreement with previous studies, our results suggest that also visual-auditory adult-like behavior develops late. We suggest that the visual dominance for space and the auditory dominance for time could reflect a cross-sensory comparison of vision in the spatial visuo-audio task and a cross-sensory comparison of audition in the temporal visuo-audio task.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gori</LastName>
<ForeName>Monica</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia Genoa, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sandini</LastName>
<ForeName>Giulio</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Burr</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>09</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Integr Neurosci</MedlineTA>
<NlmUniqueID>101477950</NlmUniqueID>
<ISSNLinking>1662-5145</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 1985;14(6):721-7</RefSource>
<PMID Version="1">3837873</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(10):e25599</RefSource>
<PMID Version="1">22022420</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1981 Dec;30(6):557-64</RefSource>
<PMID Version="1">7335452</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 1995;24(10):1177-87</RefSource>
<PMID Version="1">8577576</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 1999;28(4):415-32</RefSource>
<PMID Version="1">10664783</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2000 Dec 14;408(6814):788</RefSource>
<PMID Version="1">11130706</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Jan 24;415(6870):429-33</RefSource>
<PMID Version="1">11807554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2003;3(6):406-12</RefSource>
<PMID Version="1">12901711</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Psychol. 1959 Dec;72:521-9</RefSource>
<PMID Version="1">13827044</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2008 May 6;18(9):694-8</RefSource>
<PMID Version="1">18450446</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2008 May 6;18(9):689-93</RefSource>
<PMID Version="1">18450447</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2010 Feb 9;20(3):223-5</RefSource>
<PMID Version="1">20116249</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):17041-6</RefSource>
<PMID Version="1">20837526</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Integr Neurosci. 2011;5:51</RefSource>
<PMID Version="1">21941471</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2012 Jul;50(8):1838-43</RefSource>
<PMID Version="1">22569216</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2001 Dec 4;12(17):3849-52</RefSource>
<PMID Version="1">11726807</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1964 Sep 18;145(3638):1328-30</RefSource>
<PMID Version="1">14173429</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2004 Feb 3;14(3):257-62</RefSource>
<PMID Version="1">14761661</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 2004 Oct;66(7):1171-89</RefSource>
<PMID Version="1">15751474</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2009 Sep;198(1):49-57</RefSource>
<PMID Version="1">19597804</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1983 Feb;33(2):113-20</RefSource>
<PMID Version="1">6844102</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC3443931</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">audio</Keyword>
<Keyword MajorTopicYN="N">bisection</Keyword>
<Keyword MajorTopicYN="N">development</Keyword>
<Keyword MajorTopicYN="N">integration</Keyword>
<Keyword MajorTopicYN="N">multisensory</Keyword>
<Keyword MajorTopicYN="N">space</Keyword>
<Keyword MajorTopicYN="N">time</Keyword>
<Keyword MajorTopicYN="N">visual</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>5</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>8</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2012</Year>
<Month>9</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.3389/fnint.2012.00077</ArticleId>
<ArticleId IdType="pubmed">23060759</ArticleId>
<ArticleId IdType="pmc">PMC3443931</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Burr, David" sort="Burr, David" uniqKey="Burr D" first="David" last="Burr">David Burr</name>
<name sortKey="Sandini, Giulio" sort="Sandini, Giulio" uniqKey="Sandini G" first="Giulio" last="Sandini">Giulio Sandini</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="Gori, Monica" sort="Gori, Monica" uniqKey="Gori M" first="Monica" last="Gori">Monica Gori</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B60 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000B60 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23060759
   |texte=   Development of visuo-auditory integration in space and time.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23060759" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024