Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cross-modal sensory integration of visual-tactile motion information: instrument design and human psychophysics.

Identifieur interne : 000943 ( PubMed/Checkpoint ); précédent : 000942; suivant : 000944

Cross-modal sensory integration of visual-tactile motion information: instrument design and human psychophysics.

Auteurs : Yu-Cheng Pei [Taïwan] ; Ting-Yu Chang ; Tsung-Chi Lee ; Sudipta Saha ; Hsin-Yi Lai ; Manuel Gomez-Ramirez ; Shih-Wei Chou ; Alice M K. Wong

Source :

RBID : pubmed:23727955

English descriptors

Abstract

Information obtained from multiple sensory modalities, such as vision and touch, is integrated to yield a holistic percept. As a haptic approach usually involves cross-modal sensory experiences, it is necessary to develop an apparatus that can characterize how a biological system integrates visual-tactile sensory information as well as how a robotic device infers object information emanating from both vision and touch. In the present study, we develop a novel visual-tactile cross-modal integration stimulator that consists of an LED panel to present visual stimuli and a tactile stimulator with three degrees of freedom that can present tactile motion stimuli with arbitrary motion direction, speed, and indentation depth in the skin. The apparatus can present cross-modal stimuli in which the spatial locations of visual and tactile stimulations are perfectly aligned. We presented visual-tactile stimuli in which the visual and tactile directions were either congruent or incongruent, and human observers reported the perceived visual direction of motion. Results showed that perceived direction of visual motion can be biased by the direction of tactile motion when visual signals are weakened. The results also showed that the visual-tactile motion integration follows the rule of temporal congruency of multi-modal inputs, a fundamental property known for cross-modal integration.

DOI: 10.3390/s130607212
PubMed: 23727955


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23727955

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cross-modal sensory integration of visual-tactile motion information: instrument design and human psychophysics.</title>
<author>
<name sortKey="Pei, Yu Cheng" sort="Pei, Yu Cheng" uniqKey="Pei Y" first="Yu-Cheng" last="Pei">Yu-Cheng Pei</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan. yspeii@adm.cgmh.org.tw</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan 333</wicri:regionArea>
<wicri:noRegion>Taoyuan 333</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chang, Ting Yu" sort="Chang, Ting Yu" uniqKey="Chang T" first="Ting-Yu" last="Chang">Ting-Yu Chang</name>
</author>
<author>
<name sortKey="Lee, Tsung Chi" sort="Lee, Tsung Chi" uniqKey="Lee T" first="Tsung-Chi" last="Lee">Tsung-Chi Lee</name>
</author>
<author>
<name sortKey="Saha, Sudipta" sort="Saha, Sudipta" uniqKey="Saha S" first="Sudipta" last="Saha">Sudipta Saha</name>
</author>
<author>
<name sortKey="Lai, Hsin Yi" sort="Lai, Hsin Yi" uniqKey="Lai H" first="Hsin-Yi" last="Lai">Hsin-Yi Lai</name>
</author>
<author>
<name sortKey="Gomez Ramirez, Manuel" sort="Gomez Ramirez, Manuel" uniqKey="Gomez Ramirez M" first="Manuel" last="Gomez-Ramirez">Manuel Gomez-Ramirez</name>
</author>
<author>
<name sortKey="Chou, Shih Wei" sort="Chou, Shih Wei" uniqKey="Chou S" first="Shih-Wei" last="Chou">Shih-Wei Chou</name>
</author>
<author>
<name sortKey="Wong, Alice M K" sort="Wong, Alice M K" uniqKey="Wong A" first="Alice M K" last="Wong">Alice M K. Wong</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.3390/s130607212</idno>
<idno type="RBID">pubmed:23727955</idno>
<idno type="pmid">23727955</idno>
<idno type="wicri:Area/PubMed/Corpus">000949</idno>
<idno type="wicri:Area/PubMed/Curation">000949</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000943</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cross-modal sensory integration of visual-tactile motion information: instrument design and human psychophysics.</title>
<author>
<name sortKey="Pei, Yu Cheng" sort="Pei, Yu Cheng" uniqKey="Pei Y" first="Yu-Cheng" last="Pei">Yu-Cheng Pei</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan. yspeii@adm.cgmh.org.tw</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan 333</wicri:regionArea>
<wicri:noRegion>Taoyuan 333</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chang, Ting Yu" sort="Chang, Ting Yu" uniqKey="Chang T" first="Ting-Yu" last="Chang">Ting-Yu Chang</name>
</author>
<author>
<name sortKey="Lee, Tsung Chi" sort="Lee, Tsung Chi" uniqKey="Lee T" first="Tsung-Chi" last="Lee">Tsung-Chi Lee</name>
</author>
<author>
<name sortKey="Saha, Sudipta" sort="Saha, Sudipta" uniqKey="Saha S" first="Sudipta" last="Saha">Sudipta Saha</name>
</author>
<author>
<name sortKey="Lai, Hsin Yi" sort="Lai, Hsin Yi" uniqKey="Lai H" first="Hsin-Yi" last="Lai">Hsin-Yi Lai</name>
</author>
<author>
<name sortKey="Gomez Ramirez, Manuel" sort="Gomez Ramirez, Manuel" uniqKey="Gomez Ramirez M" first="Manuel" last="Gomez-Ramirez">Manuel Gomez-Ramirez</name>
</author>
<author>
<name sortKey="Chou, Shih Wei" sort="Chou, Shih Wei" uniqKey="Chou S" first="Shih-Wei" last="Chou">Shih-Wei Chou</name>
</author>
<author>
<name sortKey="Wong, Alice M K" sort="Wong, Alice M K" uniqKey="Wong A" first="Alice M K" last="Wong">Alice M K. Wong</name>
</author>
</analytic>
<series>
<title level="j">Sensors (Basel, Switzerland)</title>
<idno type="eISSN">1424-8220</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Humans</term>
<term>Motion</term>
<term>Psychophysics</term>
<term>Touch Perception</term>
<term>Visual Perception</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Motion</term>
<term>Psychophysics</term>
<term>Touch Perception</term>
<term>Visual Perception</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Information obtained from multiple sensory modalities, such as vision and touch, is integrated to yield a holistic percept. As a haptic approach usually involves cross-modal sensory experiences, it is necessary to develop an apparatus that can characterize how a biological system integrates visual-tactile sensory information as well as how a robotic device infers object information emanating from both vision and touch. In the present study, we develop a novel visual-tactile cross-modal integration stimulator that consists of an LED panel to present visual stimuli and a tactile stimulator with three degrees of freedom that can present tactile motion stimuli with arbitrary motion direction, speed, and indentation depth in the skin. The apparatus can present cross-modal stimuli in which the spatial locations of visual and tactile stimulations are perfectly aligned. We presented visual-tactile stimuli in which the visual and tactile directions were either congruent or incongruent, and human observers reported the perceived visual direction of motion. Results showed that perceived direction of visual motion can be biased by the direction of tactile motion when visual signals are weakened. The results also showed that the visual-tactile motion integration follows the rule of temporal congruency of multi-modal inputs, a fundamental property known for cross-modal integration.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23727955</PMID>
<DateCreated>
<Year>2013</Year>
<Month>06</Month>
<Day>03</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>11</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>04</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1424-8220</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>Sensors (Basel, Switzerland)</Title>
<ISOAbbreviation>Sensors (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>Cross-modal sensory integration of visual-tactile motion information: instrument design and human psychophysics.</ArticleTitle>
<Pagination>
<MedlinePgn>7212-23</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/s130607212</ELocationID>
<Abstract>
<AbstractText>Information obtained from multiple sensory modalities, such as vision and touch, is integrated to yield a holistic percept. As a haptic approach usually involves cross-modal sensory experiences, it is necessary to develop an apparatus that can characterize how a biological system integrates visual-tactile sensory information as well as how a robotic device infers object information emanating from both vision and touch. In the present study, we develop a novel visual-tactile cross-modal integration stimulator that consists of an LED panel to present visual stimuli and a tactile stimulator with three degrees of freedom that can present tactile motion stimuli with arbitrary motion direction, speed, and indentation depth in the skin. The apparatus can present cross-modal stimuli in which the spatial locations of visual and tactile stimulations are perfectly aligned. We presented visual-tactile stimuli in which the visual and tactile directions were either congruent or incongruent, and human observers reported the perceived visual direction of motion. Results showed that perceived direction of visual motion can be biased by the direction of tactile motion when visual signals are weakened. The results also showed that the visual-tactile motion integration follows the rule of temporal congruency of multi-modal inputs, a fundamental property known for cross-modal integration.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pei</LastName>
<ForeName>Yu-Cheng</ForeName>
<Initials>YC</Initials>
<AffiliationInfo>
<Affiliation>Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan. yspeii@adm.cgmh.org.tw</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Ting-Yu</ForeName>
<Initials>TY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Tsung-Chi</ForeName>
<Initials>TC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Saha</LastName>
<ForeName>Sudipta</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lai</LastName>
<ForeName>Hsin-Yi</ForeName>
<Initials>HY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gomez-Ramirez</LastName>
<ForeName>Manuel</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chou</LastName>
<ForeName>Shih-Wei</ForeName>
<Initials>SW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wong</LastName>
<ForeName>Alice M K</ForeName>
<Initials>AM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Sensors (Basel)</MedlineTA>
<NlmUniqueID>101204366</NlmUniqueID>
<ISSNLinking>1424-8220</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2006 Sep;96(3):1625-37</RefSource>
<PMID Version="1">16723415</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2006 Jan 9;392(1-2):96-100</RefSource>
<PMID Version="1">16213655</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Aug 1;27(31):8261-7</RefSource>
<PMID Version="1">17670972</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2008 Apr;9(4):255-66</RefSource>
<PMID Version="1">18354398</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):8130-5</RefSource>
<PMID Version="1">18524953</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2008 Jul 22;18(14):1050-4</RefSource>
<PMID Version="1">18635355</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2008 Aug 28;59(4):662-73</RefSource>
<PMID Version="1">18760701</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2009 May 12;19(9):745-50</RefSource>
<PMID Version="1">19361996</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2010 Nov;207(1-2):1-11</RefSource>
<PMID Version="1">20878396</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2011 Feb 10;69(3):536-47</RefSource>
<PMID Version="1">21315263</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2012 Jan;15(1):146-54</RefSource>
<PMID Version="1">22101645</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2000 Jan;3(1):69-73</RefSource>
<PMID Version="1">10607397</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 1999 Oct;39(21):3621-9</RefSource>
<PMID Version="1">10746132</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Jan 24;415(6870):429-33</RefSource>
<PMID Version="1">11807554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2002 Sep;146(2):161-71</RefSource>
<PMID Version="1">12195518</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2002 Sep;16(5):957-64</RefSource>
<PMID Version="1">12372032</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 2002 Oct;64(7):1083-94</RefSource>
<PMID Version="1">12489663</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2004 Feb 3;14(3):257-62</RefSource>
<PMID Version="1">14761661</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Sci. 2004 Jun;15(6):397-402</RefSource>
<PMID Version="1">15147493</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cogn Affect Behav Neurosci. 2004 Jun;4(2):148-69</RefSource>
<PMID Version="1">15460922</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1976 Dec 23-30;264(5588):746-8</RefSource>
<PMID Version="1">1012311</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1979 Jun 29;169(3):561-4</RefSource>
<PMID Version="1">109170</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1981 Feb 16;206(2):287-303</RefSource>
<PMID Version="1">7214136</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1983 Jul 22;221(4608):389-91</RefSource>
<PMID Version="1">6867718</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1986 Feb 19;365(2):350-4</RefSource>
<PMID Version="1">3947999</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1985 Dec;357(3):213-30</RefSource>
<PMID Version="1">3938308</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1987 Oct;7(10):3215-29</RefSource>
<PMID Version="1">3668625</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Methods. 1988 Jan;22(3):221-31</RefSource>
<PMID Version="1">3361948</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1997 Jan 23;385(6614):308</RefSource>
<PMID Version="1">9002513</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2004 Apr;8(4):162-9</RefSource>
<PMID Version="1">15050512</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2004 Dec 1;4(12):967-92</RefSource>
<PMID Version="1">15669906</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 2005 Apr;15(2):145-53</RefSource>
<PMID Version="1">15831395</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2005 Jul;8(7):941-9</RefSource>
<PMID Version="1">15951810</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2005 Sep 20;15(18):R762-4</RefSource>
<PMID Version="1">16169476</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Methods. 2007 Mar 30;161(1):62-74</RefSource>
<PMID Version="1">17134760</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D009038">Motion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D011601">Psychophysics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055698">Touch Perception</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014796">Visual Perception</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3715219</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>3</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>5</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>5</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">s130607212</ArticleId>
<ArticleId IdType="doi">10.3390/s130607212</ArticleId>
<ArticleId IdType="pubmed">23727955</ArticleId>
<ArticleId IdType="pmc">PMC3715219</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Taïwan</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chang, Ting Yu" sort="Chang, Ting Yu" uniqKey="Chang T" first="Ting-Yu" last="Chang">Ting-Yu Chang</name>
<name sortKey="Chou, Shih Wei" sort="Chou, Shih Wei" uniqKey="Chou S" first="Shih-Wei" last="Chou">Shih-Wei Chou</name>
<name sortKey="Gomez Ramirez, Manuel" sort="Gomez Ramirez, Manuel" uniqKey="Gomez Ramirez M" first="Manuel" last="Gomez-Ramirez">Manuel Gomez-Ramirez</name>
<name sortKey="Lai, Hsin Yi" sort="Lai, Hsin Yi" uniqKey="Lai H" first="Hsin-Yi" last="Lai">Hsin-Yi Lai</name>
<name sortKey="Lee, Tsung Chi" sort="Lee, Tsung Chi" uniqKey="Lee T" first="Tsung-Chi" last="Lee">Tsung-Chi Lee</name>
<name sortKey="Saha, Sudipta" sort="Saha, Sudipta" uniqKey="Saha S" first="Sudipta" last="Saha">Sudipta Saha</name>
<name sortKey="Wong, Alice M K" sort="Wong, Alice M K" uniqKey="Wong A" first="Alice M K" last="Wong">Alice M K. Wong</name>
</noCountry>
<country name="Taïwan">
<noRegion>
<name sortKey="Pei, Yu Cheng" sort="Pei, Yu Cheng" uniqKey="Pei Y" first="Yu-Cheng" last="Pei">Yu-Cheng Pei</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000943 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000943 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23727955
   |texte=   Cross-modal sensory integration of visual-tactile motion information: instrument design and human psychophysics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23727955" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024