Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Somato-motor haptic processing in posterior inner perisylvian region (SII/pIC) of the macaque monkey.

Identifieur interne : 000800 ( PubMed/Checkpoint ); précédent : 000799; suivant : 000801

Somato-motor haptic processing in posterior inner perisylvian region (SII/pIC) of the macaque monkey.

Auteurs : Hiroaki Ishida [Italie] ; Luca Fornia ; Laura Clara Grandi ; Maria Alessandra Umiltà ; Vittorio Gallese

Source :

RBID : pubmed:23936121

English descriptors

Abstract

The posterior inner perisylvian region including the secondary somatosensory cortex (area SII) and the adjacent region of posterior insular cortex (pIC) has been implicated in haptic processing by integrating somato-motor information during hand-manipulation, both in humans and in non-human primates. However, motor-related properties during hand-manipulation are still largely unknown. To investigate a motor-related activity in the hand region of SII/pIC, two macaque monkeys were trained to perform a hand-manipulation task, requiring 3 different grip types (precision grip, finger exploration, side grip) both in light and in dark conditions. Our results showed that 70% (n = 33/48) of task related neurons within SII/pIC were only activated during monkeys' active hand-manipulation. Of those 33 neurons, 15 (45%) began to discharge before hand-target contact, while the remaining neurons were tonically active after contact. Thirty-percent (n = 15/48) of studied neurons responded to both passive somatosensory stimulation and to the motor task. A consistent percentage of task-related neurons in SII/pIC was selectively activated during finger exploration (FE) and precision grasping (PG) execution, suggesting they play a pivotal role in control skilled finger movements. Furthermore, hand-manipulation-related neurons also responded when visual feedback was absent in the dark. Altogether, our results suggest that somato-motor neurons in SII/pIC likely contribute to haptic processing from the initial to the final phase of grasping and object manipulation. Such motor-related activity could also provide the somato-motor binding principle enabling the translation of diachronic somatosensory inputs into a coherent image of the explored object.

DOI: 10.1371/journal.pone.0069931
PubMed: 23936121


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23936121

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Somato-motor haptic processing in posterior inner perisylvian region (SII/pIC) of the macaque monkey.</title>
<author>
<name sortKey="Ishida, Hiroaki" sort="Ishida, Hiroaki" uniqKey="Ishida H" first="Hiroaki" last="Ishida">Hiroaki Ishida</name>
<affiliation wicri:level="1">
<nlm:affiliation>Italian Institute of Technology (IIT), Brain Center for Motor and Social Cognition (BCSMC), Parma, Italy. hiroaki.ishida@iit.it</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Italian Institute of Technology (IIT), Brain Center for Motor and Social Cognition (BCSMC), Parma</wicri:regionArea>
<wicri:noRegion>Parma</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fornia, Luca" sort="Fornia, Luca" uniqKey="Fornia L" first="Luca" last="Fornia">Luca Fornia</name>
</author>
<author>
<name sortKey="Grandi, Laura Clara" sort="Grandi, Laura Clara" uniqKey="Grandi L" first="Laura Clara" last="Grandi">Laura Clara Grandi</name>
</author>
<author>
<name sortKey="Umilta, Maria Alessandra" sort="Umilta, Maria Alessandra" uniqKey="Umilta M" first="Maria Alessandra" last="Umiltà">Maria Alessandra Umiltà</name>
</author>
<author>
<name sortKey="Gallese, Vittorio" sort="Gallese, Vittorio" uniqKey="Gallese V" first="Vittorio" last="Gallese">Vittorio Gallese</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.1371/journal.pone.0069931</idno>
<idno type="RBID">pubmed:23936121</idno>
<idno type="pmid">23936121</idno>
<idno type="wicri:Area/PubMed/Corpus">000898</idno>
<idno type="wicri:Area/PubMed/Curation">000898</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000800</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Somato-motor haptic processing in posterior inner perisylvian region (SII/pIC) of the macaque monkey.</title>
<author>
<name sortKey="Ishida, Hiroaki" sort="Ishida, Hiroaki" uniqKey="Ishida H" first="Hiroaki" last="Ishida">Hiroaki Ishida</name>
<affiliation wicri:level="1">
<nlm:affiliation>Italian Institute of Technology (IIT), Brain Center for Motor and Social Cognition (BCSMC), Parma, Italy. hiroaki.ishida@iit.it</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Italian Institute of Technology (IIT), Brain Center for Motor and Social Cognition (BCSMC), Parma</wicri:regionArea>
<wicri:noRegion>Parma</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fornia, Luca" sort="Fornia, Luca" uniqKey="Fornia L" first="Luca" last="Fornia">Luca Fornia</name>
</author>
<author>
<name sortKey="Grandi, Laura Clara" sort="Grandi, Laura Clara" uniqKey="Grandi L" first="Laura Clara" last="Grandi">Laura Clara Grandi</name>
</author>
<author>
<name sortKey="Umilta, Maria Alessandra" sort="Umilta, Maria Alessandra" uniqKey="Umilta M" first="Maria Alessandra" last="Umiltà">Maria Alessandra Umiltà</name>
</author>
<author>
<name sortKey="Gallese, Vittorio" sort="Gallese, Vittorio" uniqKey="Gallese V" first="Vittorio" last="Gallese">Vittorio Gallese</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Evoked Potentials</term>
<term>Fingers</term>
<term>Hand (physiology)</term>
<term>Hand Strength (physiology)</term>
<term>Macaca</term>
<term>Male</term>
<term>Motor Activity (physiology)</term>
<term>Neurons (physiology)</term>
<term>Parietal Lobe (physiology)</term>
<term>Photic Stimulation</term>
<term>Psychomotor Performance</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Hand</term>
<term>Hand Strength</term>
<term>Motor Activity</term>
<term>Neurons</term>
<term>Parietal Lobe</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Evoked Potentials</term>
<term>Fingers</term>
<term>Macaca</term>
<term>Male</term>
<term>Photic Stimulation</term>
<term>Psychomotor Performance</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The posterior inner perisylvian region including the secondary somatosensory cortex (area SII) and the adjacent region of posterior insular cortex (pIC) has been implicated in haptic processing by integrating somato-motor information during hand-manipulation, both in humans and in non-human primates. However, motor-related properties during hand-manipulation are still largely unknown. To investigate a motor-related activity in the hand region of SII/pIC, two macaque monkeys were trained to perform a hand-manipulation task, requiring 3 different grip types (precision grip, finger exploration, side grip) both in light and in dark conditions. Our results showed that 70% (n = 33/48) of task related neurons within SII/pIC were only activated during monkeys' active hand-manipulation. Of those 33 neurons, 15 (45%) began to discharge before hand-target contact, while the remaining neurons were tonically active after contact. Thirty-percent (n = 15/48) of studied neurons responded to both passive somatosensory stimulation and to the motor task. A consistent percentage of task-related neurons in SII/pIC was selectively activated during finger exploration (FE) and precision grasping (PG) execution, suggesting they play a pivotal role in control skilled finger movements. Furthermore, hand-manipulation-related neurons also responded when visual feedback was absent in the dark. Altogether, our results suggest that somato-motor neurons in SII/pIC likely contribute to haptic processing from the initial to the final phase of grasping and object manipulation. Such motor-related activity could also provide the somato-motor binding principle enabling the translation of diachronic somatosensory inputs into a coherent image of the explored object.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23936121</PMID>
<DateCreated>
<Year>2013</Year>
<Month>08</Month>
<Day>12</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>04</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Somato-motor haptic processing in posterior inner perisylvian region (SII/pIC) of the macaque monkey.</ArticleTitle>
<Pagination>
<MedlinePgn>e69931</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0069931</ELocationID>
<Abstract>
<AbstractText>The posterior inner perisylvian region including the secondary somatosensory cortex (area SII) and the adjacent region of posterior insular cortex (pIC) has been implicated in haptic processing by integrating somato-motor information during hand-manipulation, both in humans and in non-human primates. However, motor-related properties during hand-manipulation are still largely unknown. To investigate a motor-related activity in the hand region of SII/pIC, two macaque monkeys were trained to perform a hand-manipulation task, requiring 3 different grip types (precision grip, finger exploration, side grip) both in light and in dark conditions. Our results showed that 70% (n = 33/48) of task related neurons within SII/pIC were only activated during monkeys' active hand-manipulation. Of those 33 neurons, 15 (45%) began to discharge before hand-target contact, while the remaining neurons were tonically active after contact. Thirty-percent (n = 15/48) of studied neurons responded to both passive somatosensory stimulation and to the motor task. A consistent percentage of task-related neurons in SII/pIC was selectively activated during finger exploration (FE) and precision grasping (PG) execution, suggesting they play a pivotal role in control skilled finger movements. Furthermore, hand-manipulation-related neurons also responded when visual feedback was absent in the dark. Altogether, our results suggest that somato-motor neurons in SII/pIC likely contribute to haptic processing from the initial to the final phase of grasping and object manipulation. Such motor-related activity could also provide the somato-motor binding principle enabling the translation of diachronic somatosensory inputs into a coherent image of the explored object.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ishida</LastName>
<ForeName>Hiroaki</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Italian Institute of Technology (IIT), Brain Center for Motor and Social Cognition (BCSMC), Parma, Italy. hiroaki.ishida@iit.it</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fornia</LastName>
<ForeName>Luca</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grandi</LastName>
<ForeName>Laura Clara</ForeName>
<Initials>LC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Umiltà</LastName>
<ForeName>Maria Alessandra</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gallese</LastName>
<ForeName>Vittorio</ForeName>
<Initials>V</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Cybern. 2002 Aug;87(2):116-40</RefSource>
<PMID Version="1">12181587</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2002 Nov;5(11):1217-25</RefSource>
<PMID Version="1">12368806</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2002 Dec;88(6):3133-49</RefSource>
<PMID Version="1">12466436</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 2003 Aug 4;462(4):382-99</RefSource>
<PMID Version="1">12811808</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2003 Nov;153(2):239-45</RefSource>
<PMID Version="1">12955381</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2003 Nov;90(5):2978-86</RefSource>
<PMID Version="1">14615423</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2004 Apr;21(4):236-46</RefSource>
<PMID Version="1">15038005</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2004 Sep;92(3):1770-82</RefSource>
<PMID Version="1">15163676</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 1979;17(2):139-51</RefSource>
<PMID Version="1">111155</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1980 Apr;43(4):1090-110</RefSource>
<PMID Version="1">6766995</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1980 Jul 1;192(1):69-92</RefSource>
<PMID Version="1">7410614</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cortex. 1980 Oct;16(3):397-412</RefSource>
<PMID Version="1">7194170</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 1984 Jan;11(1):67-83</RefSource>
<PMID Version="1">6696789</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1985 Jan 28;325(1-2):375-80</RefSource>
<PMID Version="1">3978429</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1986 Sep 15;251(3):281-98</RefSource>
<PMID Version="1">3021823</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1987 Mar 17;406(1-2):402-7</RefSource>
<PMID Version="1">3567637</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1987 Mar;434(1):43-94</RefSource>
<PMID Version="1">3552126</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 1987;25(1A):31-40</RefSource>
<PMID Version="1">3574648</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cogn Psychol. 1987 Jul;19(3):342-68</RefSource>
<PMID Version="1">3608405</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mayo Clin Proc. 1991 Feb;66(2):129-42</RefSource>
<PMID Version="1">1994134</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1992 Dec;52(6):661-70</RefSource>
<PMID Version="1">1287570</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1993 Jul;13(7):2772-89</RefSource>
<PMID Version="1">8331372</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1993 Jul;70(1):331-50</RefSource>
<PMID Version="1">8360718</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1993 Jul;70(1):444-7</RefSource>
<PMID Version="1">8360721</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1993 Sep 3;621(1):116-20</RefSource>
<PMID Version="1">8221062</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Psychol (Amst). 1993 Oct;84(1):29-40</RefSource>
<PMID Version="1">8237454</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 1994 May;32(5):527-39</RefSource>
<PMID Version="1">8084412</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 1994 Jul 21;5(12):1525-9</RefSource>
<PMID Version="1">7948854</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Can J Physiol Pharmacol. 1994 May;72(5):558-70</RefSource>
<PMID Version="1">7954086</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1995 May;15(5 Pt 2):3821-39</RefSource>
<PMID Version="1">7751949</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1995 May 15;355(4):539-62</RefSource>
<PMID Version="1">7636030</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 1995 Jul;18(7):314-20</RefSource>
<PMID Version="1">7571012</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1995 Sep 29;269(5232):1880-2</RefSource>
<PMID Version="1">7569931</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 1995 Sep-Oct;5(5):429-38</RefSource>
<PMID Version="1">8547789</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1996 Jun;119 ( Pt 3):875-88</RefSource>
<PMID Version="1">8673499</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 1996 Aug 23;214(2-3):147-50</RefSource>
<PMID Version="1">8878105</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1997 Mar;77(3):1656-62</RefSource>
<PMID Version="1">9084631</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 1997 Aug;20(8):350-7</RefSource>
<PMID Version="1">9246729</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1997 Oct;78(4):2226-30</RefSource>
<PMID Version="1">9325390</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Somatosens Mot Res. 1997;14(4):237-67</RefSource>
<PMID Version="1">9443366</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1999 Feb;81(2):825-34</RefSource>
<PMID Version="1">10036283</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1999 Feb;81(2):835-44</RefSource>
<PMID Version="1">10036284</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 1998 Nov;1(7):635-40</RefSource>
<PMID Version="1">10196573</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1999 Sep;128(1-2):31-40</RefSource>
<PMID Version="1">10473737</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1999 Aug;127(4):329-54</RefSource>
<PMID Version="1">10480270</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1999 Oct;122 ( Pt 10):1989-97</RefSource>
<PMID Version="1">10506099</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 1999 Sep;11(9):3276-86</RefSource>
<PMID Version="1">10510191</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Rev. 1962 Nov;69:477-91</RefSource>
<PMID Version="1">13947730</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2004 Dec 8;24(49):11193-204</RefSource>
<PMID Version="1">15590936</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2005;43(6):957-66</RefSource>
<PMID Version="1">15716166</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2006 Feb;95(2):709-29</RefSource>
<PMID Version="1">16251265</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 Jun 14;26(24):6473-84</RefSource>
<PMID Version="1">16775135</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 Jun 14;26(24):6485-95</RefSource>
<PMID Version="1">16775136</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2006 Oct;16(10):1389-417</RefSource>
<PMID Version="1">16306322</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 Dec 27;26(52):13567-75</RefSource>
<PMID Version="1">17192440</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2007 Jan;97(1):387-406</RefSource>
<PMID Version="1">16971679</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2007 Feb;97(2):1656-70</RefSource>
<PMID Version="1">17093113</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2007 Apr;10(4):417-9</RefSource>
<PMID Version="1">17369825</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Rev. 2008 Jan;88(1):37-57</RefSource>
<PMID Version="1">18195082</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2008 May;18(5):1094-111</RefSource>
<PMID Version="1">17720686</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Aug 13;28(33):8161-8</RefSource>
<PMID Version="1">18701678</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2008 Oct;28(8):1569-88</RefSource>
<PMID Version="1">18691325</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 2008 Aug;18(4):418-24</RefSource>
<PMID Version="1">18809491</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2009 May;10(5):345-59</RefSource>
<PMID Version="1">19352402</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2009 May;101(5):2649-67</RefSource>
<PMID Version="1">19225170</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 May 20;29(20):6436-48</RefSource>
<PMID Version="1">19458215</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2009 Jul;7(7):e1000164</RefSource>
<PMID Version="1">19636360</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2010 Apr 29;66(2):300-14</RefSource>
<PMID Version="1">20435005</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2010 Jan;22(1):83-96</RefSource>
<PMID Version="1">19199418</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2010 Nov 10;30(45):15175-84</RefSource>
<PMID Version="1">21068323</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Struct Funct. 2011 Mar;216(1):43-65</RefSource>
<PMID Version="1">21132509</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Mar 9;31(10):3743-56</RefSource>
<PMID Version="1">21389229</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Jun 1;31(22):8220-9</RefSource>
<PMID Version="1">21632943</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Aug 10;31(32):11660-77</RefSource>
<PMID Version="1">21832196</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Aug 24;31(34):12351-63</RefSource>
<PMID Version="1">21865477</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2012 Mar;33(3):534-41</RefSource>
<PMID Version="1">21425393</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):10077-82</RefSource>
<PMID Version="1">22647599</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2012 Sep;108(6):1607-19</RefSource>
<PMID Version="1">22745465</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Neurosci. 2012;13:138</RefSource>
<PMID Version="1">23126264</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Lipidol. 2013 Feb;24(1):18-24</RefSource>
<PMID Version="1">23165087</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2013 Apr;23(4):967-87</RefSource>
<PMID Version="1">22499799</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2000 Mar 9;404(6774):187-90</RefSource>
<PMID Version="1">10724171</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2000 May;83(5):2580-601</RefSource>
<PMID Version="1">10805659</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2000 Jul;12(4):691-703</RefSource>
<PMID Version="1">10936920</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2000 Aug;84(2):780-97</RefSource>
<PMID Version="1">10938305</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2001 Mar;124(Pt 3):571-86</RefSource>
<PMID Version="1">11222457</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2001 Oct;86(4):2069-80</RefSource>
<PMID Version="1">11600662</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2001 Nov;124(Pt 11):2287-98</RefSource>
<PMID Version="1">11673329</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005071">Evoked Potentials</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005385">Fingers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006225">Hand</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018737">Hand Strength</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008251">Macaca</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009043">Motor Activity</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009474">Neurons</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010296">Parietal Lobe</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010775">Photic Stimulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011597">Psychomotor Performance</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3728371</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="ppublish">
<Year>2013</Year>
<Month></Month>
<Day></Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>2</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>6</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2013</Year>
<Month>7</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.pone.0069931</ArticleId>
<ArticleId IdType="pii">PONE-D-13-09301</ArticleId>
<ArticleId IdType="pubmed">23936121</ArticleId>
<ArticleId IdType="pmc">PMC3728371</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Fornia, Luca" sort="Fornia, Luca" uniqKey="Fornia L" first="Luca" last="Fornia">Luca Fornia</name>
<name sortKey="Gallese, Vittorio" sort="Gallese, Vittorio" uniqKey="Gallese V" first="Vittorio" last="Gallese">Vittorio Gallese</name>
<name sortKey="Grandi, Laura Clara" sort="Grandi, Laura Clara" uniqKey="Grandi L" first="Laura Clara" last="Grandi">Laura Clara Grandi</name>
<name sortKey="Umilta, Maria Alessandra" sort="Umilta, Maria Alessandra" uniqKey="Umilta M" first="Maria Alessandra" last="Umiltà">Maria Alessandra Umiltà</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="Ishida, Hiroaki" sort="Ishida, Hiroaki" uniqKey="Ishida H" first="Hiroaki" last="Ishida">Hiroaki Ishida</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000800 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000800 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23936121
   |texte=   Somato-motor haptic processing in posterior inner perisylvian region (SII/pIC) of the macaque monkey.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23936121" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024