Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Touch interacts with vision during binocular rivalry with a tight orientation tuning.

Identifieur interne : 000762 ( PubMed/Checkpoint ); précédent : 000761; suivant : 000763

Touch interacts with vision during binocular rivalry with a tight orientation tuning.

Auteurs : Claudia Lunghi [Italie] ; David Alais

Source :

RBID : pubmed:23472219

English descriptors

Abstract

Multisensory integration is a common feature of the mammalian brain that allows it to deal more efficiently with the ambiguity of sensory input by combining complementary signals from several sensory sources. Growing evidence suggests that multisensory interactions can occur as early as primary sensory cortices. Here we present incompatible visual signals (orthogonal gratings) to each eye to create visual competition between monocular inputs in primary visual cortex where binocular combination would normally take place. The incompatibility prevents binocular fusion and triggers an ambiguous perceptual response in which the two images are perceived one at a time in an irregular alternation. One key function of multisensory integration is to minimize perceptual ambiguity by exploiting cross-sensory congruence. We show that a haptic signal matching one of the visual alternatives helps disambiguate visual perception during binocular rivalry by both prolonging the dominance period of the congruent visual stimulus and by shortening its suppression period. Importantly, this interaction is strictly tuned for orientation, with a mismatch as small as 7.5° between visual and haptic orientations sufficient to annul the interaction. These results indicate important conclusions: first, that vision and touch interact at early levels of visual processing where interocular conflicts are first detected and orientation tunings are narrow, and second, that haptic input can influence visual signals outside of visual awareness, bringing a stimulus made invisible by binocular rivalry suppression back to awareness sooner than would occur without congruent haptic input.

DOI: 10.1371/journal.pone.0058754
PubMed: 23472219


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23472219

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Touch interacts with vision during binocular rivalry with a tight orientation tuning.</title>
<author>
<name sortKey="Lunghi, Claudia" sort="Lunghi, Claudia" uniqKey="Lunghi C" first="Claudia" last="Lunghi">Claudia Lunghi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Neuroscience, Università Degli Studi di Firenze, Firenze, Italy. c.lunghi@in.cnr.it</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Neuroscience, Università Degli Studi di Firenze, Firenze</wicri:regionArea>
<wicri:noRegion>Firenze</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Alais, David" sort="Alais, David" uniqKey="Alais D" first="David" last="Alais">David Alais</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.1371/journal.pone.0058754</idno>
<idno type="RBID">pubmed:23472219</idno>
<idno type="pmid">23472219</idno>
<idno type="wicri:Area/PubMed/Corpus">000A01</idno>
<idno type="wicri:Area/PubMed/Curation">000A01</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000762</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Touch interacts with vision during binocular rivalry with a tight orientation tuning.</title>
<author>
<name sortKey="Lunghi, Claudia" sort="Lunghi, Claudia" uniqKey="Lunghi C" first="Claudia" last="Lunghi">Claudia Lunghi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Neuroscience, Università Degli Studi di Firenze, Firenze, Italy. c.lunghi@in.cnr.it</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Neuroscience, Università Degli Studi di Firenze, Firenze</wicri:regionArea>
<wicri:noRegion>Firenze</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Alais, David" sort="Alais, David" uniqKey="Alais D" first="David" last="Alais">David Alais</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Brain (physiology)</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Orientation</term>
<term>Probability</term>
<term>Touch (physiology)</term>
<term>Vision Disparity</term>
<term>Vision, Binocular (physiology)</term>
<term>Visual Cortex (physiology)</term>
<term>Visual Perception (physiology)</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Brain</term>
<term>Touch</term>
<term>Vision, Binocular</term>
<term>Visual Cortex</term>
<term>Visual Perception</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Orientation</term>
<term>Probability</term>
<term>Vision Disparity</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Multisensory integration is a common feature of the mammalian brain that allows it to deal more efficiently with the ambiguity of sensory input by combining complementary signals from several sensory sources. Growing evidence suggests that multisensory interactions can occur as early as primary sensory cortices. Here we present incompatible visual signals (orthogonal gratings) to each eye to create visual competition between monocular inputs in primary visual cortex where binocular combination would normally take place. The incompatibility prevents binocular fusion and triggers an ambiguous perceptual response in which the two images are perceived one at a time in an irregular alternation. One key function of multisensory integration is to minimize perceptual ambiguity by exploiting cross-sensory congruence. We show that a haptic signal matching one of the visual alternatives helps disambiguate visual perception during binocular rivalry by both prolonging the dominance period of the congruent visual stimulus and by shortening its suppression period. Importantly, this interaction is strictly tuned for orientation, with a mismatch as small as 7.5° between visual and haptic orientations sufficient to annul the interaction. These results indicate important conclusions: first, that vision and touch interact at early levels of visual processing where interocular conflicts are first detected and orientation tunings are narrow, and second, that haptic input can influence visual signals outside of visual awareness, bringing a stimulus made invisible by binocular rivalry suppression back to awareness sooner than would occur without congruent haptic input.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23472219</PMID>
<DateCreated>
<Year>2013</Year>
<Month>03</Month>
<Day>08</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>12</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>02</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Touch interacts with vision during binocular rivalry with a tight orientation tuning.</ArticleTitle>
<Pagination>
<MedlinePgn>e58754</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0058754</ELocationID>
<Abstract>
<AbstractText>Multisensory integration is a common feature of the mammalian brain that allows it to deal more efficiently with the ambiguity of sensory input by combining complementary signals from several sensory sources. Growing evidence suggests that multisensory interactions can occur as early as primary sensory cortices. Here we present incompatible visual signals (orthogonal gratings) to each eye to create visual competition between monocular inputs in primary visual cortex where binocular combination would normally take place. The incompatibility prevents binocular fusion and triggers an ambiguous perceptual response in which the two images are perceived one at a time in an irregular alternation. One key function of multisensory integration is to minimize perceptual ambiguity by exploiting cross-sensory congruence. We show that a haptic signal matching one of the visual alternatives helps disambiguate visual perception during binocular rivalry by both prolonging the dominance period of the congruent visual stimulus and by shortening its suppression period. Importantly, this interaction is strictly tuned for orientation, with a mismatch as small as 7.5° between visual and haptic orientations sufficient to annul the interaction. These results indicate important conclusions: first, that vision and touch interact at early levels of visual processing where interocular conflicts are first detected and orientation tunings are narrow, and second, that haptic input can influence visual signals outside of visual awareness, bringing a stimulus made invisible by binocular rivalry suppression back to awareness sooner than would occur without congruent haptic input.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lunghi</LastName>
<ForeName>Claudia</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Neuroscience, Università Degli Studi di Firenze, Firenze, Italy. c.lunghi@in.cnr.it</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alais</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>03</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Jan 24;415(6870):429-33</RefSource>
<PMID Version="1">11807554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2012 Mar 6;22(5):383-8</RefSource>
<PMID Version="1">22326023</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2002 Apr 16;13(5):571-4</RefSource>
<PMID Version="1">11973448</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2002 Jul 1;22(13):5749-59</RefSource>
<PMID Version="1">12097528</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cognition. 2002 Sep;85(2):113-43</RefSource>
<PMID Version="1">12127696</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 2002 Sep 20;135(1-2):93-103</RefSource>
<PMID Version="1">12356439</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2002 Nov 22;298(5598):1627-30</RefSource>
<PMID Version="1">12446912</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2004 Feb 3;14(3):257-62</RefSource>
<PMID Version="1">14761661</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Sci. 2004 Jun;15(6):397-402</RefSource>
<PMID Version="1">15147493</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2004 Jul 1;4(7):539-51</RefSource>
<PMID Version="1">15330700</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 1973 Jul;13(7):1255-67</RefSource>
<PMID Version="1">4722797</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 1973;2(1):53-60</RefSource>
<PMID Version="1">4777570</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1977 Sep 22;269(5626):328-30</RefSource>
<PMID Version="1">409953</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Res. 1983;45(2):135-45</RefSource>
<PMID Version="1">6647715</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Opt Soc Am A. 1984 Feb;1(2):226-32</RefSource>
<PMID Version="1">6423788</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1987 Mar;57(3):755-72</RefSource>
<PMID Version="1">3559700</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1996 Apr 11;380(6574):526-8</RefSource>
<PMID Version="1">8606771</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1997 Jan 23;385(6614):308</RefSource>
<PMID Version="1">9002513</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Spat Vis. 1997;10(4):433-6</RefSource>
<PMID Version="1">9176952</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 1998 Nov 29;353(1377):1801-18</RefSource>
<PMID Version="1">9854253</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1999 Oct 7;401(6753):587-90</RefSource>
<PMID Version="1">10524625</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2004 Apr;8(4):162-9</RefSource>
<PMID Version="1">15050512</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 2005;28:377-401</RefSource>
<PMID Version="1">16022601</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2005;5(11):1004-12</RefSource>
<PMID Version="1">16441198</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2006 Jun;10(6):278-85</RefSource>
<PMID Version="1">16713325</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 Jun 14;26(24):6473-84</RefSource>
<PMID Version="1">16775135</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2006 Sep 18;17(13):1381-4</RefSource>
<PMID Version="1">16932143</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2007 Feb;97(2):1633-41</RefSource>
<PMID Version="1">17135476</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 2007;36(2):288-98</RefSource>
<PMID Version="1">17402669</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Sci. 2007 Dec;18(12):1090-8</RefSource>
<PMID Version="1">18031417</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2008 Jan 10;57(1):11-23</RefSource>
<PMID Version="1">18184561</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 2008 Aug;48(17):1743-57</RefSource>
<PMID Version="1">18617216</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2008;3(8):e3046</RefSource>
<PMID Version="1">18728773</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Sci. 2008 Jul;19(7):635-41</RefSource>
<PMID Version="1">18727775</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 2009 Apr;87(4):195-211</RefSource>
<PMID Version="1">18824061</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2009 May 12;19(9):735-9</RefSource>
<PMID Version="1">19345097</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 Sep 16;29(37):11641-9</RefSource>
<PMID Version="1">19759311</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2010 Feb 23;20(4):R143-4</RefSource>
<PMID Version="1">20178754</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 2010 May 12;50(10):929-35</RefSource>
<PMID Version="1">20338191</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Sci. 2009 Nov;20(11):1348-55</RefSource>
<PMID Version="1">19788529</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Seeing Perceiving. 2010;23(1):3-38</RefSource>
<PMID Version="1">20507725</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2010 Aug 10;20(15):1362-7</RefSource>
<PMID Version="1">20598538</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2010 Aug 10;20(15):1356-8</RefSource>
<PMID Version="1">20598540</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2010;10(10):27</RefSource>
<PMID Version="1">20884492</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15408-13</RefSource>
<PMID Version="1">21876148</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2012 Apr 5;367(1591):932-41</RefSource>
<PMID Version="1">22371615</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2002 Jan;3(1):13-21</RefSource>
<PMID Version="1">11823801</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001921">Brain</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009949">Orientation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011336">Probability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014110">Touch</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015357">Vision Disparity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015348">Vision, Binocular</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014793">Visual Cortex</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014796">Visual Perception</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055815">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3589364</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>9</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>2</Month>
<Day>6</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2013</Year>
<Month>3</Month>
<Day>5</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.pone.0058754</ArticleId>
<ArticleId IdType="pii">PONE-D-12-29663</ArticleId>
<ArticleId IdType="pubmed">23472219</ArticleId>
<ArticleId IdType="pmc">PMC3589364</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Alais, David" sort="Alais, David" uniqKey="Alais D" first="David" last="Alais">David Alais</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="Lunghi, Claudia" sort="Lunghi, Claudia" uniqKey="Lunghi C" first="Claudia" last="Lunghi">Claudia Lunghi</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000762 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000762 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23472219
   |texte=   Touch interacts with vision during binocular rivalry with a tight orientation tuning.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23472219" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024