Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Virtual reality simulation in neurosurgery: technologies and evolution.

Identifieur interne : 000747 ( PubMed/Checkpoint ); précédent : 000746; suivant : 000748

Virtual reality simulation in neurosurgery: technologies and evolution.

Auteurs : Sonny Chan [États-Unis] ; François Conti ; Kenneth Salisbury ; Nikolas H. Blevins

Source :

RBID : pubmed:23254804

English descriptors

Abstract

Neurosurgeons are faced with the challenge of learning, planning, and performing increasingly complex surgical procedures in which there is little room for error. With improvements in computational power and advances in visual and haptic display technologies, virtual surgical environments can now offer potential benefits for surgical training, planning, and rehearsal in a safe, simulated setting. This article introduces the various classes of surgical simulators and their respective purposes through a brief survey of representative simulation systems in the context of neurosurgery. Many technical challenges currently limit the application of virtual surgical environments. Although we cannot yet expect a digital patient to be indistinguishable from reality, new developments in computational methods and related technology bring us closer every day. We recognize that the design and implementation of an immersive virtual reality surgical simulator require expert knowledge from many disciplines. This article highlights a selection of recent developments in research areas related to virtual reality simulation, including anatomic modeling, computer graphics and visualization, haptics, and physics simulation, and discusses their implication for the simulation of neurosurgery.

DOI: 10.1227/NEU.0b013e3182750d26
PubMed: 23254804


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23254804

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Virtual reality simulation in neurosurgery: technologies and evolution.</title>
<author>
<name sortKey="Chan, Sonny" sort="Chan, Sonny" uniqKey="Chan S" first="Sonny" last="Chan">Sonny Chan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Computer Science, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Conti, Francois" sort="Conti, Francois" uniqKey="Conti F" first="François" last="Conti">François Conti</name>
</author>
<author>
<name sortKey="Salisbury, Kenneth" sort="Salisbury, Kenneth" uniqKey="Salisbury K" first="Kenneth" last="Salisbury">Kenneth Salisbury</name>
</author>
<author>
<name sortKey="Blevins, Nikolas H" sort="Blevins, Nikolas H" uniqKey="Blevins N" first="Nikolas H" last="Blevins">Nikolas H. Blevins</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.1227/NEU.0b013e3182750d26</idno>
<idno type="RBID">pubmed:23254804</idno>
<idno type="pmid">23254804</idno>
<idno type="wicri:Area/PubMed/Corpus">000A57</idno>
<idno type="wicri:Area/PubMed/Curation">000A57</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000747</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Virtual reality simulation in neurosurgery: technologies and evolution.</title>
<author>
<name sortKey="Chan, Sonny" sort="Chan, Sonny" uniqKey="Chan S" first="Sonny" last="Chan">Sonny Chan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Computer Science, Stanford University, Stanford, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science, Stanford University, Stanford, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Conti, Francois" sort="Conti, Francois" uniqKey="Conti F" first="François" last="Conti">François Conti</name>
</author>
<author>
<name sortKey="Salisbury, Kenneth" sort="Salisbury, Kenneth" uniqKey="Salisbury K" first="Kenneth" last="Salisbury">Kenneth Salisbury</name>
</author>
<author>
<name sortKey="Blevins, Nikolas H" sort="Blevins, Nikolas H" uniqKey="Blevins N" first="Nikolas H" last="Blevins">Nikolas H. Blevins</name>
</author>
</analytic>
<series>
<title level="j">Neurosurgery</title>
<idno type="eISSN">1524-4040</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer Simulation</term>
<term>Computer-Assisted Instruction (methods)</term>
<term>Computer-Assisted Instruction (trends)</term>
<term>Education, Medical, Graduate (methods)</term>
<term>Education, Medical, Graduate (trends)</term>
<term>Feedback</term>
<term>Humans</term>
<term>Models, Anatomic</term>
<term>Motor Skills</term>
<term>Neurosurgery (education)</term>
<term>Neurosurgery (methods)</term>
<term>Neurosurgical Procedures (education)</term>
<term>Neurosurgical Procedures (methods)</term>
<term>Robotics (education)</term>
<term>Robotics (methods)</term>
<term>Touch</term>
<term>User-Computer Interface</term>
</keywords>
<keywords scheme="MESH" qualifier="education" xml:lang="en">
<term>Neurosurgery</term>
<term>Neurosurgical Procedures</term>
<term>Robotics</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computer-Assisted Instruction</term>
<term>Education, Medical, Graduate</term>
<term>Neurosurgery</term>
<term>Neurosurgical Procedures</term>
<term>Robotics</term>
</keywords>
<keywords scheme="MESH" qualifier="trends" xml:lang="en">
<term>Computer-Assisted Instruction</term>
<term>Education, Medical, Graduate</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Feedback</term>
<term>Humans</term>
<term>Models, Anatomic</term>
<term>Motor Skills</term>
<term>Touch</term>
<term>User-Computer Interface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Neurosurgeons are faced with the challenge of learning, planning, and performing increasingly complex surgical procedures in which there is little room for error. With improvements in computational power and advances in visual and haptic display technologies, virtual surgical environments can now offer potential benefits for surgical training, planning, and rehearsal in a safe, simulated setting. This article introduces the various classes of surgical simulators and their respective purposes through a brief survey of representative simulation systems in the context of neurosurgery. Many technical challenges currently limit the application of virtual surgical environments. Although we cannot yet expect a digital patient to be indistinguishable from reality, new developments in computational methods and related technology bring us closer every day. We recognize that the design and implementation of an immersive virtual reality surgical simulator require expert knowledge from many disciplines. This article highlights a selection of recent developments in research areas related to virtual reality simulation, including anatomic modeling, computer graphics and visualization, haptics, and physics simulation, and discusses their implication for the simulation of neurosurgery.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23254804</PMID>
<DateCreated>
<Year>2012</Year>
<Month>12</Month>
<Day>20</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>28</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1524-4040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>72 Suppl 1</Volume>
<PubDate>
<Year>2013</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Neurosurgery</Title>
<ISOAbbreviation>Neurosurgery</ISOAbbreviation>
</Journal>
<ArticleTitle>Virtual reality simulation in neurosurgery: technologies and evolution.</ArticleTitle>
<Pagination>
<MedlinePgn>154-64</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1227/NEU.0b013e3182750d26</ELocationID>
<Abstract>
<AbstractText>Neurosurgeons are faced with the challenge of learning, planning, and performing increasingly complex surgical procedures in which there is little room for error. With improvements in computational power and advances in visual and haptic display technologies, virtual surgical environments can now offer potential benefits for surgical training, planning, and rehearsal in a safe, simulated setting. This article introduces the various classes of surgical simulators and their respective purposes through a brief survey of representative simulation systems in the context of neurosurgery. Many technical challenges currently limit the application of virtual surgical environments. Although we cannot yet expect a digital patient to be indistinguishable from reality, new developments in computational methods and related technology bring us closer every day. We recognize that the design and implementation of an immersive virtual reality surgical simulator require expert knowledge from many disciplines. This article highlights a selection of recent developments in research areas related to virtual reality simulation, including anatomic modeling, computer graphics and visualization, haptics, and physics simulation, and discusses their implication for the simulation of neurosurgery.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chan</LastName>
<ForeName>Sonny</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Computer Science, Stanford University, Stanford, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Conti</LastName>
<ForeName>François</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Salisbury</LastName>
<ForeName>Kenneth</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Blevins</LastName>
<ForeName>Nikolas H</ForeName>
<Initials>NH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>5 R01 LM01067302</GrantID>
<Acronym>LM</Acronym>
<Agency>NLM NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Neurosurgery</MedlineTA>
<NlmUniqueID>7802914</NlmUniqueID>
<ISSNLinking>0148-396X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003194">Computer-Assisted Instruction</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000639">trends</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004503">Education, Medical, Graduate</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000639">trends</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005246">Feedback</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008953">Models, Anatomic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009048">Motor Skills</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009493">Neurosurgery</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000193">education</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019635">Neurosurgical Procedures</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000193">education</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012371">Robotics</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000193">education</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014110">Touch</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014584">User-Computer Interface</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1227/NEU.0b013e3182750d26</ArticleId>
<ArticleId IdType="pii">00006123-201301001-00020</ArticleId>
<ArticleId IdType="pubmed">23254804</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Blevins, Nikolas H" sort="Blevins, Nikolas H" uniqKey="Blevins N" first="Nikolas H" last="Blevins">Nikolas H. Blevins</name>
<name sortKey="Conti, Francois" sort="Conti, Francois" uniqKey="Conti F" first="François" last="Conti">François Conti</name>
<name sortKey="Salisbury, Kenneth" sort="Salisbury, Kenneth" uniqKey="Salisbury K" first="Kenneth" last="Salisbury">Kenneth Salisbury</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Chan, Sonny" sort="Chan, Sonny" uniqKey="Chan S" first="Sonny" last="Chan">Sonny Chan</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000747 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000747 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23254804
   |texte=   Virtual reality simulation in neurosurgery: technologies and evolution.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23254804" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024