Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Touch influences perceived gloss.

Identifieur interne : 000017 ( PubMed/Checkpoint ); précédent : 000016; suivant : 000018

Touch influences perceived gloss.

Auteurs : Wendy J. Adams ; Iona S. Kerrigan ; Erich W. Graf

Source :

RBID : pubmed:26915492

Abstract

Identifying an object's material properties supports recognition and action planning: we grasp objects according to how heavy, hard or slippery we expect them to be. Visual cues to material qualities such as gloss have recently received attention, but how they interact with haptic (touch) information has been largely overlooked. Here, we show that touch modulates gloss perception: objects that feel slippery are perceived as glossier (more shiny).Participants explored virtual objects that varied in look and feel. A discrimination paradigm (Experiment 1) revealed that observers integrate visual gloss with haptic information. Observers could easily detect an increase in glossiness when it was paired with a decrease in friction. In contrast, increased glossiness coupled with decreased slipperiness produced a small perceptual change: the visual and haptic changes counteracted each other. Subjective ratings (Experiment 2) reflected a similar interaction - slippery objects were rated as glossier and vice versa. The sensory system treats visual gloss and haptic friction as correlated cues to surface material. Although friction is not a perfect predictor of gloss, the visual system appears to know and use a probabilistic relationship between these variables to bias perception - a sensible strategy given the ambiguity of visual clues to gloss.

DOI: 10.1038/srep21866
PubMed: 26915492


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26915492

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Touch influences perceived gloss.</title>
<author>
<name sortKey="Adams, Wendy J" sort="Adams, Wendy J" uniqKey="Adams W" first="Wendy J" last="Adams">Wendy J. Adams</name>
<affiliation>
<nlm:affiliation>Psychology, University of Southampton, Southampton, SO17 1BJ, ENGLAND.</nlm:affiliation>
<wicri:noCountry code="subField">ENGLAND</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Kerrigan, Iona S" sort="Kerrigan, Iona S" uniqKey="Kerrigan I" first="Iona S" last="Kerrigan">Iona S. Kerrigan</name>
<affiliation>
<nlm:affiliation>Psychology, University of Southampton, Southampton, SO17 1BJ, ENGLAND.</nlm:affiliation>
<wicri:noCountry code="subField">ENGLAND</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Graf, Erich W" sort="Graf, Erich W" uniqKey="Graf E" first="Erich W" last="Graf">Erich W. Graf</name>
<affiliation>
<nlm:affiliation>Psychology, University of Southampton, Southampton, SO17 1BJ, ENGLAND.</nlm:affiliation>
<wicri:noCountry code="subField">ENGLAND</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="doi">10.1038/srep21866</idno>
<idno type="RBID">pubmed:26915492</idno>
<idno type="pmid">26915492</idno>
<idno type="wicri:Area/PubMed/Corpus">000090</idno>
<idno type="wicri:Area/PubMed/Curation">000090</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000017</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Touch influences perceived gloss.</title>
<author>
<name sortKey="Adams, Wendy J" sort="Adams, Wendy J" uniqKey="Adams W" first="Wendy J" last="Adams">Wendy J. Adams</name>
<affiliation>
<nlm:affiliation>Psychology, University of Southampton, Southampton, SO17 1BJ, ENGLAND.</nlm:affiliation>
<wicri:noCountry code="subField">ENGLAND</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Kerrigan, Iona S" sort="Kerrigan, Iona S" uniqKey="Kerrigan I" first="Iona S" last="Kerrigan">Iona S. Kerrigan</name>
<affiliation>
<nlm:affiliation>Psychology, University of Southampton, Southampton, SO17 1BJ, ENGLAND.</nlm:affiliation>
<wicri:noCountry code="subField">ENGLAND</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Graf, Erich W" sort="Graf, Erich W" uniqKey="Graf E" first="Erich W" last="Graf">Erich W. Graf</name>
<affiliation>
<nlm:affiliation>Psychology, University of Southampton, Southampton, SO17 1BJ, ENGLAND.</nlm:affiliation>
<wicri:noCountry code="subField">ENGLAND</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Identifying an object's material properties supports recognition and action planning: we grasp objects according to how heavy, hard or slippery we expect them to be. Visual cues to material qualities such as gloss have recently received attention, but how they interact with haptic (touch) information has been largely overlooked. Here, we show that touch modulates gloss perception: objects that feel slippery are perceived as glossier (more shiny).Participants explored virtual objects that varied in look and feel. A discrimination paradigm (Experiment 1) revealed that observers integrate visual gloss with haptic information. Observers could easily detect an increase in glossiness when it was paired with a decrease in friction. In contrast, increased glossiness coupled with decreased slipperiness produced a small perceptual change: the visual and haptic changes counteracted each other. Subjective ratings (Experiment 2) reflected a similar interaction - slippery objects were rated as glossier and vice versa. The sensory system treats visual gloss and haptic friction as correlated cues to surface material. Although friction is not a perfect predictor of gloss, the visual system appears to know and use a probabilistic relationship between these variables to bias perception - a sensible strategy given the ambiguity of visual clues to gloss.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="In-Data-Review">
<PMID Version="1">26915492</PMID>
<DateCreated>
<Year>2016</Year>
<Month>02</Month>
<Day>26</Day>
</DateCreated>
<DateRevised>
<Year>2016</Year>
<Month>03</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Touch influences perceived gloss.</ArticleTitle>
<Pagination>
<MedlinePgn>21866</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/srep21866</ELocationID>
<Abstract>
<AbstractText>Identifying an object's material properties supports recognition and action planning: we grasp objects according to how heavy, hard or slippery we expect them to be. Visual cues to material qualities such as gloss have recently received attention, but how they interact with haptic (touch) information has been largely overlooked. Here, we show that touch modulates gloss perception: objects that feel slippery are perceived as glossier (more shiny).Participants explored virtual objects that varied in look and feel. A discrimination paradigm (Experiment 1) revealed that observers integrate visual gloss with haptic information. Observers could easily detect an increase in glossiness when it was paired with a decrease in friction. In contrast, increased glossiness coupled with decreased slipperiness produced a small perceptual change: the visual and haptic changes counteracted each other. Subjective ratings (Experiment 2) reflected a similar interaction - slippery objects were rated as glossier and vice versa. The sensory system treats visual gloss and haptic friction as correlated cues to surface material. Although friction is not a perfect predictor of gloss, the visual system appears to know and use a probabilistic relationship between these variables to bias perception - a sensible strategy given the ambiguity of visual clues to gloss.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Adams</LastName>
<ForeName>Wendy J</ForeName>
<Initials>WJ</Initials>
<AffiliationInfo>
<Affiliation>Psychology, University of Southampton, Southampton, SO17 1BJ, ENGLAND.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kerrigan</LastName>
<ForeName>Iona S</ForeName>
<Initials>IS</Initials>
<AffiliationInfo>
<Affiliation>Psychology, University of Southampton, Southampton, SO17 1BJ, ENGLAND.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Graf</LastName>
<ForeName>Erich W</ForeName>
<Initials>EW</Initials>
<AffiliationInfo>
<Affiliation>Psychology, University of Southampton, Southampton, SO17 1BJ, ENGLAND.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>02</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Cognition. 2013 Apr;127(1):99-104</RefSource>
<PMID Version="1">23376295</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Atten Percept Psychophys. 2013 Jul;75(5):954-66</RefSource>
<PMID Version="1">23456971</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Haptics. 2013 Jan-Mar;6(1):81-93</RefSource>
<PMID Version="1">24808270</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2014 May;10(5):e1003576</RefSource>
<PMID Version="1">24811069</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2000 Jan;3(1):69-73</RefSource>
<PMID Version="1">10607397</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1999 Nov;61(8):1681-5</RefSource>
<PMID Version="1">10598479</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 2015 Apr;109:221-35</RefSource>
<PMID Version="1">25448119</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Jan 24;415(6870):429-33</RefSource>
<PMID Version="1">11807554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2003;3(5):347-68</RefSource>
<PMID Version="1">12875632</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Psychophysiol. 2003 Oct;50(1-2):63-80</RefSource>
<PMID Version="1">14511837</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Sci. 2004 Jan;15(1):33-9</RefSource>
<PMID Version="1">14717829</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2004 Oct;7(10):1057-8</RefSource>
<PMID Version="1">15361877</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2004 Sep 23;4(9):798-820</RefSource>
<PMID Version="1">15493971</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol Hum Percept Perform. 1981 Aug;7(4):902-15</RefSource>
<PMID Version="1">6457101</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1981 Oct;30(4):407-10</RefSource>
<PMID Version="1">7322822</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1982 Apr;31(4):339-44</RefSource>
<PMID Version="1">7110887</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1985 Jan;37(1):66-72</RefSource>
<PMID Version="1">3991320</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol Hum Percept Perform. 1986 May;12(2):169-80</RefSource>
<PMID Version="1">2940321</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1990 Jan 11;343(6254):165-8</RefSource>
<PMID Version="1">2296307</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 2006 Apr;68(3):339-52</RefSource>
<PMID Version="1">16900828</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Psychol (Amst). 2007 Feb;124(2):177-89</RefSource>
<PMID Version="1">16684497</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2007;7(5):7.1-14</RefSource>
<PMID Version="1">18217847</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ergonomics. 2008 Dec;51(12):1973-83</RefSource>
<PMID Version="1">19034787</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2009 Jan 13;19(1):R23-5</RefSource>
<PMID Version="1">19138585</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2009 Dec;102(6):3111-8</RefSource>
<PMID Version="1">19793879</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2010 Nov 3;30(44):14745-9</RefSource>
<PMID Version="1">21048133</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 2010 Dec;50(24):2775-82</RefSource>
<PMID Version="1">20937297</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 2011 Apr 22;51(8):961-7</RefSource>
<PMID Version="1">21371492</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2011 Jul 7;278(1714):1973-80</RefSource>
<PMID Version="1">21123257</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Bull. 2011 Jun 30;85(5):245-59</RefSource>
<PMID Version="1">20193747</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2011 Dec 6;21(23):2010-6</RefSource>
<PMID Version="1">22119529</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2011 Dec 20;21(24):R978-83</RefSource>
<PMID Version="1">22192826</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2013;13(1):9</RefSource>
<PMID Version="1">23291649</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC4768155</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>10</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>2</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">srep21866</ArticleId>
<ArticleId IdType="doi">10.1038/srep21866</ArticleId>
<ArticleId IdType="pubmed">26915492</ArticleId>
<ArticleId IdType="pmc">PMC4768155</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Adams, Wendy J" sort="Adams, Wendy J" uniqKey="Adams W" first="Wendy J" last="Adams">Wendy J. Adams</name>
<name sortKey="Graf, Erich W" sort="Graf, Erich W" uniqKey="Graf E" first="Erich W" last="Graf">Erich W. Graf</name>
<name sortKey="Kerrigan, Iona S" sort="Kerrigan, Iona S" uniqKey="Kerrigan I" first="Iona S" last="Kerrigan">Iona S. Kerrigan</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000017 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000017 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:26915492
   |texte=   Touch influences perceived gloss.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:26915492" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024