Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Motion Aftereffects Transfer between Touch and Vision

Identifieur interne : 001A68 ( Pmc/Curation ); précédent : 001A67; suivant : 001A69

Motion Aftereffects Transfer between Touch and Vision

Auteurs : Talia Konkle [États-Unis] ; Qi Wang [États-Unis] ; Vincent Hayward [France] ; Christopher I. Moore [États-Unis]

Source :

RBID : PMC:3398123

Abstract

Summary

Current views on multisensory motion integration assume separate substrates where visual motion perceptually dominates tactile motion [1, 2]. However, recent neuroimaging findings demonstrate strong activation of visual motion processing areas by tactile stimuli [36], implying a potentially bidirectional relationship. To test the relationship between visual and tactile motion processing, we examined the transfer of motion aftereffects. In the well-known visual motion aftereffect, adapting to visual motion in one direction causes a subsequently presented stationary stimulus to be perceived as moving in the opposite direction [7, 8]. The existence of motion aftereffects in the tactile domain was debated [911], though robust tactile motion aftereffects have recently been demonstrated [12, 13]. By using a motion adaptation paradigm, we found that repeated exposure to visual motion in a given direction produced a tactile motion aftereffect, the illusion of motion in the opponent direction across the finger pad. We also observed that repeated exposure to tactile motion induces a visual motion aftereffect, biasing the perceived direction of counterphase gratings. These crossmodal aftereffects, operating both from vision to touch and from touch to vision, present strong behavioral evidence that the processing of visual and tactile motion rely on shared representations that dynamically impact modality-specific perception.


Url:
DOI: 10.1016/j.cub.2009.03.035
PubMed: 19361996
PubMed Central: 3398123

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3398123

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Motion Aftereffects Transfer between Touch and Vision</title>
<author>
<name sortKey="Konkle, Talia" sort="Konkle, Talia" uniqKey="Konkle T" first="Talia" last="Konkle">Talia Konkle</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">McGovern Institute for Brain Research and Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 46-2171, Cambridge, MA 02139, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>McGovern Institute for Brain Research and Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 46-2171, Cambridge, MA 02139</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Qi" sort="Wang, Qi" uniqKey="Wang Q" first="Qi" last="Wang">Qi Wang</name>
<affiliation wicri:level="1">
<nlm:aff id="A2">Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA 30332-0535, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA 30332-0535</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hayward, Vincent" sort="Hayward, Vincent" uniqKey="Hayward V" first="Vincent" last="Hayward">Vincent Hayward</name>
<affiliation wicri:level="1">
<nlm:aff id="A3">Institute des Systemes Intelligents et de Robotique, Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris, France</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institute des Systemes Intelligents et de Robotique, Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Moore, Christopher I" sort="Moore, Christopher I" uniqKey="Moore C" first="Christopher I." last="Moore">Christopher I. Moore</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">McGovern Institute for Brain Research and Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 46-2171, Cambridge, MA 02139, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>McGovern Institute for Brain Research and Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 46-2171, Cambridge, MA 02139</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">19361996</idno>
<idno type="pmc">3398123</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398123</idno>
<idno type="RBID">PMC:3398123</idno>
<idno type="doi">10.1016/j.cub.2009.03.035</idno>
<date when="2009">2009</date>
<idno type="wicri:Area/Pmc/Corpus">001A68</idno>
<idno type="wicri:Area/Pmc/Curation">001A68</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Motion Aftereffects Transfer between Touch and Vision</title>
<author>
<name sortKey="Konkle, Talia" sort="Konkle, Talia" uniqKey="Konkle T" first="Talia" last="Konkle">Talia Konkle</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">McGovern Institute for Brain Research and Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 46-2171, Cambridge, MA 02139, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>McGovern Institute for Brain Research and Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 46-2171, Cambridge, MA 02139</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Qi" sort="Wang, Qi" uniqKey="Wang Q" first="Qi" last="Wang">Qi Wang</name>
<affiliation wicri:level="1">
<nlm:aff id="A2">Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA 30332-0535, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA 30332-0535</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hayward, Vincent" sort="Hayward, Vincent" uniqKey="Hayward V" first="Vincent" last="Hayward">Vincent Hayward</name>
<affiliation wicri:level="1">
<nlm:aff id="A3">Institute des Systemes Intelligents et de Robotique, Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris, France</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institute des Systemes Intelligents et de Robotique, Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Moore, Christopher I" sort="Moore, Christopher I" uniqKey="Moore C" first="Christopher I." last="Moore">Christopher I. Moore</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">McGovern Institute for Brain Research and Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 46-2171, Cambridge, MA 02139, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>McGovern Institute for Brain Research and Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 46-2171, Cambridge, MA 02139</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current Biology</title>
<idno type="ISSN">0960-9822</idno>
<idno type="eISSN">1879-0445</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Summary</title>
<p id="P2">Current views on multisensory motion integration assume separate substrates where visual motion perceptually dominates tactile motion [
<xref rid="R1" ref-type="bibr">1</xref>
,
<xref rid="R2" ref-type="bibr">2</xref>
]. However, recent neuroimaging findings demonstrate strong activation of visual motion processing areas by tactile stimuli [
<xref rid="R3" ref-type="bibr">3</xref>
<xref rid="R6" ref-type="bibr">6</xref>
], implying a potentially bidirectional relationship. To test the relationship between visual and tactile motion processing, we examined the transfer of motion aftereffects. In the well-known visual motion aftereffect, adapting to visual motion in one direction causes a subsequently presented stationary stimulus to be perceived as moving in the opposite direction [
<xref rid="R7" ref-type="bibr">7</xref>
,
<xref rid="R8" ref-type="bibr">8</xref>
]. The existence of motion aftereffects in the tactile domain was debated [
<xref rid="R9" ref-type="bibr">9</xref>
<xref rid="R11" ref-type="bibr">11</xref>
], though robust tactile motion aftereffects have recently been demonstrated [
<xref rid="R12" ref-type="bibr">12</xref>
,
<xref rid="R13" ref-type="bibr">13</xref>
]. By using a motion adaptation paradigm, we found that repeated exposure to visual motion in a given direction produced a tactile motion aftereffect, the illusion of motion in the opponent direction across the finger pad. We also observed that repeated exposure to tactile motion induces a visual motion aftereffect, biasing the perceived direction of counterphase gratings. These crossmodal aftereffects, operating both from vision to touch and from touch to vision, present strong behavioral evidence that the processing of visual and tactile motion rely on shared representations that dynamically impact modality-specific perception.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">9107782</journal-id>
<journal-id journal-id-type="pubmed-jr-id">8548</journal-id>
<journal-id journal-id-type="nlm-ta">Curr Biol</journal-id>
<journal-id journal-id-type="iso-abbrev">Curr. Biol.</journal-id>
<journal-title-group>
<journal-title>Current Biology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0960-9822</issn>
<issn pub-type="epub">1879-0445</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">19361996</article-id>
<article-id pub-id-type="pmc">3398123</article-id>
<article-id pub-id-type="doi">10.1016/j.cub.2009.03.035</article-id>
<article-id pub-id-type="manuscript">NIHMS387870</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Motion Aftereffects Transfer between Touch and Vision</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Konkle</surname>
<given-names>Talia</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref rid="FN1" ref-type="author-notes">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Qi</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hayward</surname>
<given-names>Vincent</given-names>
</name>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Moore</surname>
<given-names>Christopher I.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref rid="FN1" ref-type="author-notes">*</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
McGovern Institute for Brain Research and Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 46-2171, Cambridge, MA 02139, USA</aff>
<aff id="A2">
<label>2</label>
Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA 30332-0535, USA</aff>
<aff id="A3">
<label>3</label>
Institute des Systemes Intelligents et de Robotique, Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris, France</aff>
<author-notes>
<corresp id="FN1">
<label>*</label>
Correspondence:
<email>tkonkle@mit.edu</email>
(T.K.),
<email>cim@mit.edu</email>
(C.I.M.)</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>30</day>
<month>6</month>
<year>2012</year>
</pub-date>
<pub-date pub-type="epub">
<day>09</day>
<month>4</month>
<year>2009</year>
</pub-date>
<pub-date pub-type="ppub">
<day>12</day>
<month>5</month>
<year>2009</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>17</day>
<month>7</month>
<year>2012</year>
</pub-date>
<volume>19</volume>
<issue>9</issue>
<fpage>745</fpage>
<lpage>750</lpage>
<permissions>
<copyright-statement>© 2009 Elsevier Ltd All rights reserved</copyright-statement>
<copyright-year>2009</copyright-year>
</permissions>
<abstract>
<title>Summary</title>
<p id="P2">Current views on multisensory motion integration assume separate substrates where visual motion perceptually dominates tactile motion [
<xref rid="R1" ref-type="bibr">1</xref>
,
<xref rid="R2" ref-type="bibr">2</xref>
]. However, recent neuroimaging findings demonstrate strong activation of visual motion processing areas by tactile stimuli [
<xref rid="R3" ref-type="bibr">3</xref>
<xref rid="R6" ref-type="bibr">6</xref>
], implying a potentially bidirectional relationship. To test the relationship between visual and tactile motion processing, we examined the transfer of motion aftereffects. In the well-known visual motion aftereffect, adapting to visual motion in one direction causes a subsequently presented stationary stimulus to be perceived as moving in the opposite direction [
<xref rid="R7" ref-type="bibr">7</xref>
,
<xref rid="R8" ref-type="bibr">8</xref>
]. The existence of motion aftereffects in the tactile domain was debated [
<xref rid="R9" ref-type="bibr">9</xref>
<xref rid="R11" ref-type="bibr">11</xref>
], though robust tactile motion aftereffects have recently been demonstrated [
<xref rid="R12" ref-type="bibr">12</xref>
,
<xref rid="R13" ref-type="bibr">13</xref>
]. By using a motion adaptation paradigm, we found that repeated exposure to visual motion in a given direction produced a tactile motion aftereffect, the illusion of motion in the opponent direction across the finger pad. We also observed that repeated exposure to tactile motion induces a visual motion aftereffect, biasing the perceived direction of counterphase gratings. These crossmodal aftereffects, operating both from vision to touch and from touch to vision, present strong behavioral evidence that the processing of visual and tactile motion rely on shared representations that dynamically impact modality-specific perception.</p>
</abstract>
<funding-group>
<award-group>
<funding-source country="United States">National Eye Institute : NEI</funding-source>
<award-id>T32 EY013935 || EY</award-id>
</award-group>
</funding-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A68 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 001A68 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:3398123
   |texte=   Motion Aftereffects Transfer between Touch and Vision
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:19361996" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024