Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Primary motor cortex reports efferent control of vibrissa motion on multiple time scales

Identifieur interne : 001A28 ( Pmc/Curation ); précédent : 001A27; suivant : 001A29

Primary motor cortex reports efferent control of vibrissa motion on multiple time scales

Auteurs : Daniel N. Hill [États-Unis, Allemagne] ; John C. Curtis [États-Unis] ; Jeffrey D. Moore [États-Unis] ; David Kleinfeld [États-Unis]

Source :

RBID : PMC:3717360

Abstract

Exploratory whisking in rat is an example of self-generated movement on multiple time scales, from slow variations in the envelope of whisking to the rapid sequence of muscle contractions during a single whisk cycle. We find that, as a population, spike trains of single units in primary vibrissa motor cortex report the absolute angle of vibrissa position. This representation persists after sensory nerve transection, indicating an efferent source. About two-thirds of the units are modulated by slow variations in the envelope of whisking while relatively few units report rapid changes in position within the whisk cycle. The combined results from this study and past measurements, which show that primary sensory cortex codes the whisking envelope as a motor copy signal, imply that signals present in both sensory and motor cortices are necessary to compute coordinates based on vibrissa touch.


Url:
DOI: 10.1016/j.neuron.2011.09.020
PubMed: 22017992
PubMed Central: 3717360

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3717360

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Primary motor cortex reports efferent control of vibrissa motion on multiple time scales</title>
<author>
<name sortKey="Hill, Daniel N" sort="Hill, Daniel N" uniqKey="Hill D" first="Daniel N." last="Hill">Daniel N. Hill</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Computational Neuroscience Graduate Program, University of California, San Diego, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational Neuroscience Graduate Program, University of California, San Diego, CA</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="A2">Department of Physics, Division of Physical Sciences, University of California, San Diego, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physics, Division of Physical Sciences, University of California, San Diego, CA</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="A3">Institute of Neuroscience, Technical University Munich, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Neuroscience, Technical University Munich</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Curtis, John C" sort="Curtis, John C" uniqKey="Curtis J" first="John C." last="Curtis">John C. Curtis</name>
<affiliation wicri:level="1">
<nlm:aff id="A4">The Salk Institute for Biological Studies, San Diego, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Salk Institute for Biological Studies, San Diego, CA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Moore, Jeffrey D" sort="Moore, Jeffrey D" uniqKey="Moore J" first="Jeffrey D." last="Moore">Jeffrey D. Moore</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Computational Neuroscience Graduate Program, University of California, San Diego, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational Neuroscience Graduate Program, University of California, San Diego, CA</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="A2">Department of Physics, Division of Physical Sciences, University of California, San Diego, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physics, Division of Physical Sciences, University of California, San Diego, CA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kleinfeld, David" sort="Kleinfeld, David" uniqKey="Kleinfeld D" first="David" last="Kleinfeld">David Kleinfeld</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Computational Neuroscience Graduate Program, University of California, San Diego, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational Neuroscience Graduate Program, University of California, San Diego, CA</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="A2">Department of Physics, Division of Physical Sciences, University of California, San Diego, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physics, Division of Physical Sciences, University of California, San Diego, CA</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="A5">Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, CA</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22017992</idno>
<idno type="pmc">3717360</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717360</idno>
<idno type="RBID">PMC:3717360</idno>
<idno type="doi">10.1016/j.neuron.2011.09.020</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">001A28</idno>
<idno type="wicri:Area/Pmc/Curation">001A28</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Primary motor cortex reports efferent control of vibrissa motion on multiple time scales</title>
<author>
<name sortKey="Hill, Daniel N" sort="Hill, Daniel N" uniqKey="Hill D" first="Daniel N." last="Hill">Daniel N. Hill</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Computational Neuroscience Graduate Program, University of California, San Diego, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational Neuroscience Graduate Program, University of California, San Diego, CA</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="A2">Department of Physics, Division of Physical Sciences, University of California, San Diego, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physics, Division of Physical Sciences, University of California, San Diego, CA</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="A3">Institute of Neuroscience, Technical University Munich, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Neuroscience, Technical University Munich</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Curtis, John C" sort="Curtis, John C" uniqKey="Curtis J" first="John C." last="Curtis">John C. Curtis</name>
<affiliation wicri:level="1">
<nlm:aff id="A4">The Salk Institute for Biological Studies, San Diego, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Salk Institute for Biological Studies, San Diego, CA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Moore, Jeffrey D" sort="Moore, Jeffrey D" uniqKey="Moore J" first="Jeffrey D." last="Moore">Jeffrey D. Moore</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Computational Neuroscience Graduate Program, University of California, San Diego, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational Neuroscience Graduate Program, University of California, San Diego, CA</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="A2">Department of Physics, Division of Physical Sciences, University of California, San Diego, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physics, Division of Physical Sciences, University of California, San Diego, CA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kleinfeld, David" sort="Kleinfeld, David" uniqKey="Kleinfeld D" first="David" last="Kleinfeld">David Kleinfeld</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Computational Neuroscience Graduate Program, University of California, San Diego, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational Neuroscience Graduate Program, University of California, San Diego, CA</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="A2">Department of Physics, Division of Physical Sciences, University of California, San Diego, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physics, Division of Physical Sciences, University of California, San Diego, CA</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="A5">Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, CA</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Neuron</title>
<idno type="ISSN">0896-6273</idno>
<idno type="eISSN">1097-4199</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">Exploratory whisking in rat is an example of self-generated movement on multiple time scales, from slow variations in the envelope of whisking to the rapid sequence of muscle contractions during a single whisk cycle. We find that, as a population, spike trains of single units in primary vibrissa motor cortex report the absolute angle of vibrissa position. This representation persists after sensory nerve transection, indicating an efferent source. About two-thirds of the units are modulated by slow variations in the envelope of whisking while relatively few units report rapid changes in position within the whisk cycle. The combined results from this study and past measurements, which show that primary sensory cortex codes the whisking envelope as a motor copy signal, imply that signals present in both sensory and motor cortices are necessary to compute coordinates based on vibrissa touch.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">8809320</journal-id>
<journal-id journal-id-type="pubmed-jr-id">1600</journal-id>
<journal-id journal-id-type="nlm-ta">Neuron</journal-id>
<journal-id journal-id-type="iso-abbrev">Neuron</journal-id>
<journal-title-group>
<journal-title>Neuron</journal-title>
</journal-title-group>
<issn pub-type="ppub">0896-6273</issn>
<issn pub-type="epub">1097-4199</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">22017992</article-id>
<article-id pub-id-type="pmc">3717360</article-id>
<article-id pub-id-type="doi">10.1016/j.neuron.2011.09.020</article-id>
<article-id pub-id-type="manuscript">NIHMS329741</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Primary motor cortex reports efferent control of vibrissa motion on multiple time scales</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Hill</surname>
<given-names>Daniel N.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="aff" rid="A2">2</xref>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Curtis</surname>
<given-names>John C.</given-names>
</name>
<xref ref-type="aff" rid="A4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Moore</surname>
<given-names>Jeffrey D.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kleinfeld</surname>
<given-names>David</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="aff" rid="A2">2</xref>
<xref ref-type="aff" rid="A5">5</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Computational Neuroscience Graduate Program, University of California, San Diego, CA, USA</aff>
<aff id="A2">
<label>2</label>
Department of Physics, Division of Physical Sciences, University of California, San Diego, CA, USA</aff>
<aff id="A3">
<label>3</label>
Institute of Neuroscience, Technical University Munich, Germany</aff>
<aff id="A4">
<label>4</label>
The Salk Institute for Biological Studies, San Diego, CA, USA</aff>
<aff id="A5">
<label>5</label>
Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, CA, USA</aff>
<author-notes>
<corresp id="cor1">
<bold>Correspondence:</bold>
David Kleinfeld, Department of Physics 0374, University of California, 9500 Gilman Drive, La Jolla, CA 92093, Office: 858-822-0342, Fax: 858-534-7697,
<email>dk@physics.ucsd.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>13</day>
<month>10</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="ppub">
<day>20</day>
<month>10</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>21</day>
<month>7</month>
<year>2013</year>
</pub-date>
<volume>72</volume>
<issue>2</issue>
<fpage>344</fpage>
<lpage>356</lpage>
<permissions>
<copyright-statement>© 2011 Elsevier Inc. All rights reserved.</copyright-statement>
<copyright-year>2011</copyright-year>
</permissions>
<abstract>
<p id="P1">Exploratory whisking in rat is an example of self-generated movement on multiple time scales, from slow variations in the envelope of whisking to the rapid sequence of muscle contractions during a single whisk cycle. We find that, as a population, spike trains of single units in primary vibrissa motor cortex report the absolute angle of vibrissa position. This representation persists after sensory nerve transection, indicating an efferent source. About two-thirds of the units are modulated by slow variations in the envelope of whisking while relatively few units report rapid changes in position within the whisk cycle. The combined results from this study and past measurements, which show that primary sensory cortex codes the whisking envelope as a motor copy signal, imply that signals present in both sensory and motor cortices are necessary to compute coordinates based on vibrissa touch.</p>
</abstract>
<funding-group>
<award-group>
<funding-source country="United States">National Institute of Neurological Disorders and Stroke : NINDS</funding-source>
<award-id>R01 NS058668-04 || NS</award-id>
</award-group>
</funding-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A28 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 001A28 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:3717360
   |texte=   Primary motor cortex reports efferent control of vibrissa motion on multiple time scales
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:22017992" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024