Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-Wide Analyses of Working-Memory Ability: A Review

Identifieur interne : 001882 ( Pmc/Curation ); précédent : 001881; suivant : 001883

Genome-Wide Analyses of Working-Memory Ability: A Review

Auteurs : E. E. M. Knowles ; S. R. Mathias ; D. R. Mckay ; E. Sprooten ; John Blangero ; Laura Almasy ; D. C. Glahn

Source :

RBID : PMC:4339023

Abstract

Working memory, a theoretical construct from the field of cognitive psychology, is crucial to everyday life. It refers to the ability to temporarily store and manipulate task-relevant information. The identification of genes for working memory might shed light on the molecular mechanisms of this important cognitive ability and—given the genetic overlap between, for example, schizophrenia risk and working-memory ability—might also reveal important candidate genes for psychiatric illness. A number of genome-wide searches for genes that influence working memory have been conducted in recent years. Interestingly, the results of those searches converge on the mediating role of neuronal excitability in working-memory performance, such that the role of each gene highlighted by genome-wide methods plays a part in ion channel formation and/or dopaminergic signaling in the brain, with either direct or indirect influence on dopamine levels in the prefrontal cortex. This result dovetails with animal models of working memory that highlight the role of dynamic network connectivity, as mediated by dopaminergic signaling, in the dorsolateral prefrontal cortex. Future work, which aims to characterize functional variants influencing working-memory ability, might choose to focus on those genes highlighted in the present review and also those networks in which the genes fall. Confirming gene associations and highlighting functional characterization of those associations might have implications for the understanding of normal variation in working-memory ability and also for the development of drugs for mental illness.


Url:
DOI: 10.1007/s40473-014-0028-8
PubMed: 25729637
PubMed Central: 4339023

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4339023

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-Wide Analyses of Working-Memory Ability: A Review</title>
<author>
<name sortKey="Knowles, E E M" sort="Knowles, E E M" uniqKey="Knowles E" first="E. E. M." last="Knowles">E. E. M. Knowles</name>
</author>
<author>
<name sortKey="Mathias, S R" sort="Mathias, S R" uniqKey="Mathias S" first="S. R." last="Mathias">S. R. Mathias</name>
</author>
<author>
<name sortKey="Mckay, D R" sort="Mckay, D R" uniqKey="Mckay D" first="D. R." last="Mckay">D. R. Mckay</name>
</author>
<author>
<name sortKey="Sprooten, E" sort="Sprooten, E" uniqKey="Sprooten E" first="E." last="Sprooten">E. Sprooten</name>
</author>
<author>
<name sortKey="Blangero, John" sort="Blangero, John" uniqKey="Blangero J" first="John" last="Blangero">John Blangero</name>
</author>
<author>
<name sortKey="Almasy, Laura" sort="Almasy, Laura" uniqKey="Almasy L" first="Laura" last="Almasy">Laura Almasy</name>
</author>
<author>
<name sortKey="Glahn, D C" sort="Glahn, D C" uniqKey="Glahn D" first="D. C." last="Glahn">D. C. Glahn</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25729637</idno>
<idno type="pmc">4339023</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339023</idno>
<idno type="RBID">PMC:4339023</idno>
<idno type="doi">10.1007/s40473-014-0028-8</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">001882</idno>
<idno type="wicri:Area/Pmc/Curation">001882</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Genome-Wide Analyses of Working-Memory Ability: A Review</title>
<author>
<name sortKey="Knowles, E E M" sort="Knowles, E E M" uniqKey="Knowles E" first="E. E. M." last="Knowles">E. E. M. Knowles</name>
</author>
<author>
<name sortKey="Mathias, S R" sort="Mathias, S R" uniqKey="Mathias S" first="S. R." last="Mathias">S. R. Mathias</name>
</author>
<author>
<name sortKey="Mckay, D R" sort="Mckay, D R" uniqKey="Mckay D" first="D. R." last="Mckay">D. R. Mckay</name>
</author>
<author>
<name sortKey="Sprooten, E" sort="Sprooten, E" uniqKey="Sprooten E" first="E." last="Sprooten">E. Sprooten</name>
</author>
<author>
<name sortKey="Blangero, John" sort="Blangero, John" uniqKey="Blangero J" first="John" last="Blangero">John Blangero</name>
</author>
<author>
<name sortKey="Almasy, Laura" sort="Almasy, Laura" uniqKey="Almasy L" first="Laura" last="Almasy">Laura Almasy</name>
</author>
<author>
<name sortKey="Glahn, D C" sort="Glahn, D C" uniqKey="Glahn D" first="D. C." last="Glahn">D. C. Glahn</name>
</author>
</analytic>
<series>
<title level="j">Current behavioral neuroscience reports</title>
<idno type="eISSN">2196-2979</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P2">Working memory, a theoretical construct from the field of cognitive psychology, is crucial to everyday life. It refers to the ability to temporarily store and manipulate task-relevant information. The identification of genes for working memory might shed light on the molecular mechanisms of this important cognitive ability and—given the genetic overlap between, for example, schizophrenia risk and working-memory ability—might also reveal important candidate genes for psychiatric illness. A number of genome-wide searches for genes that influence working memory have been conducted in recent years. Interestingly, the results of those searches converge on the mediating role of neuronal excitability in working-memory performance, such that the role of each gene highlighted by genome-wide methods plays a part in ion channel formation and/or dopaminergic signaling in the brain, with either direct or indirect influence on dopamine levels in the prefrontal cortex. This result dovetails with animal models of working memory that highlight the role of dynamic network connectivity, as mediated by dopaminergic signaling, in the dorsolateral prefrontal cortex. Future work, which aims to characterize functional variants influencing working-memory ability, might choose to focus on those genes highlighted in the present review and also those networks in which the genes fall. Confirming gene associations and highlighting functional characterization of those associations might have implications for the understanding of normal variation in working-memory ability and also for the development of drugs for mental illness.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">101626570</journal-id>
<journal-id journal-id-type="pubmed-jr-id">42290</journal-id>
<journal-id journal-id-type="nlm-ta">Curr Behav Neurosci Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Curr Behav Neurosci Rep</journal-id>
<journal-title-group>
<journal-title>Current behavioral neuroscience reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2196-2979</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25729637</article-id>
<article-id pub-id-type="pmc">4339023</article-id>
<article-id pub-id-type="doi">10.1007/s40473-014-0028-8</article-id>
<article-id pub-id-type="manuscript">NIHMS662900</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Genome-Wide Analyses of Working-Memory Ability: A Review</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Knowles</surname>
<given-names>E. E. M.</given-names>
</name>
<aff id="A1">Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Olin Neuropsychiatric Research Center, Institute of Living, Hartford, Hospital, Hartford, CT, USA</aff>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mathias</surname>
<given-names>S. R.</given-names>
</name>
<aff id="A2">Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Olin Neuropsychiatric Research Center, Institute of Living, Hartford, Hospital, Hartford, CT, USA</aff>
</contrib>
<contrib contrib-type="author">
<name>
<surname>McKay</surname>
<given-names>D. R.</given-names>
</name>
<aff id="A3">Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Olin Neuropsychiatric Research Center, Institute of Living, Hartford, Hospital, Hartford, CT, USA</aff>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sprooten</surname>
<given-names>E.</given-names>
</name>
<aff id="A4">Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Olin Neuropsychiatric Research Center, Institute of Living, Hartford, Hospital, Hartford, CT, USA</aff>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Blangero</surname>
<given-names>John</given-names>
</name>
<aff id="A5">Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA</aff>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Almasy</surname>
<given-names>Laura</given-names>
</name>
<aff id="A6">Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA</aff>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Glahn</surname>
<given-names>D. C.</given-names>
</name>
<aff id="A7">Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Olin Neuropsychiatric Research Center, Institute of Living, Hartford, Hospital, Hartford, CT, USA</aff>
</contrib>
</contrib-group>
<author-notes>
<corresp id="CR1">
<email>emma.knowles@yale.edu</email>
</corresp>
<fn id="FN1">
<p id="P1">
<email>david.glahn@yale.edu</email>
</p>
</fn>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>14</day>
<month>2</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="ppub">
<month>12</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>01</day>
<month>12</month>
<year>2015</year>
</pub-date>
<volume>1</volume>
<issue>4</issue>
<fpage>224</fpage>
<lpage>233</lpage>
<pmc-comment>elocation-id from pubmed: 10.1007/s40473-014-0028-8</pmc-comment>
<permissions>
<copyright-statement>© Springer International Publishing AG 2014</copyright-statement>
<copyright-year>2014</copyright-year>
</permissions>
<self-uri xlink:href="http://download.springer.com/static/pdf/310/art%253A10.1007%252Fs40473-014-0028-8.pdf?auth66=1424797766_2b98d0650d0d7cd63e007223bf0cd92e&ext=.pdf"></self-uri>
<abstract>
<p id="P2">Working memory, a theoretical construct from the field of cognitive psychology, is crucial to everyday life. It refers to the ability to temporarily store and manipulate task-relevant information. The identification of genes for working memory might shed light on the molecular mechanisms of this important cognitive ability and—given the genetic overlap between, for example, schizophrenia risk and working-memory ability—might also reveal important candidate genes for psychiatric illness. A number of genome-wide searches for genes that influence working memory have been conducted in recent years. Interestingly, the results of those searches converge on the mediating role of neuronal excitability in working-memory performance, such that the role of each gene highlighted by genome-wide methods plays a part in ion channel formation and/or dopaminergic signaling in the brain, with either direct or indirect influence on dopamine levels in the prefrontal cortex. This result dovetails with animal models of working memory that highlight the role of dynamic network connectivity, as mediated by dopaminergic signaling, in the dorsolateral prefrontal cortex. Future work, which aims to characterize functional variants influencing working-memory ability, might choose to focus on those genes highlighted in the present review and also those networks in which the genes fall. Confirming gene associations and highlighting functional characterization of those associations might have implications for the understanding of normal variation in working-memory ability and also for the development of drugs for mental illness.</p>
</abstract>
<kwd-group>
<kwd>Working memory</kwd>
<kwd>Genomics</kwd>
<kwd>Cognition</kwd>
<kwd>GWA</kwd>
<kwd>Dynamic network connectivity</kwd>
</kwd-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001882 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 001882 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:4339023
   |texte=   Genome-Wide Analyses of Working-Memory Ability: A Review
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:25729637" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024