Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

State space analysis of timing: exploiting task redundancy to reduce sensitivity to timing

Identifieur interne : 001416 ( Pmc/Curation ); précédent : 001415; suivant : 001417

State space analysis of timing: exploiting task redundancy to reduce sensitivity to timing

Auteurs : Rajal G. Cohen [États-Unis] ; Dagmar Sternad [États-Unis]

Source :

RBID : PMC:3349626

Abstract

Timing is central to many coordinated actions, and the temporal accuracy of central nervous system commands presents an important limit to skilled performance. Using target-oriented throwing in a virtual environment as an example task, this study presents a novel analysis that quantifies contributions of timing accuracy and shaping of hand trajectories to performance. Task analysis reveals that the result of a throw is fully determined by the projectile position and velocity at release; zero error can be achieved by a manifold of position and velocity combinations (solution manifold). Four predictions were tested. 1) Performers learn to release the projectile closer to the optimal moment for a given arm trajectory, achieving timing accuracy levels similar to those reported in other timing tasks (∼10 ms). 2) Performers develop a hand trajectory that follows the solution manifold such that zero error can be achieved without perfect timing. 3) Skilled performers exploit both routes to improvement more than unskilled performers. 4) Long-term improvement in skilled performance relies on continued optimization of the arm trajectory as timing limits are reached. Average and skilled subjects practiced for 6 and 15 days, respectively. In 6 days, both timing and trajectory alignment improved for all subjects, and skilled subjects showed an advantage in timing. With extended practice, performance continued to improve due to continued shaping of the trajectory, whereas timing accuracy reached an asymptote at 9 ms. We conclude that skilled subjects first maximize timing accuracy and then optimize trajectory shaping to compensate for intrinsic limitations of timing accuracy.


Url:
DOI: 10.1152/jn.00568.2011
PubMed: 22031769
PubMed Central: 3349626

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3349626

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">State space analysis of timing: exploiting task redundancy to reduce sensitivity to timing</title>
<author>
<name sortKey="Cohen, Rajal G" sort="Cohen, Rajal G" uniqKey="Cohen R" first="Rajal G." last="Cohen">Rajal G. Cohen</name>
<affiliation wicri:level="2">
<nlm:aff wicri:cut="; and" id="aff1">Department of Neurology, Oregon Health & Science University, Beaverton, Oregon</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oregon</region>
</placeName>
<wicri:cityArea>Department of Neurology, Oregon Health & Science University, Beaverton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sternad, Dagmar" sort="Sternad, Dagmar" uniqKey="Sternad D" first="Dagmar" last="Sternad">Dagmar Sternad</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Departments of Biology, Electrical and Computer Engineering, and Physics, Northeastern University, Boston, Massachusetts</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Departments of Biology, Electrical and Computer Engineering, and Physics, Northeastern University, Boston</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22031769</idno>
<idno type="pmc">3349626</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3349626</idno>
<idno type="RBID">PMC:3349626</idno>
<idno type="doi">10.1152/jn.00568.2011</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">001416</idno>
<idno type="wicri:Area/Pmc/Curation">001416</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">State space analysis of timing: exploiting task redundancy to reduce sensitivity to timing</title>
<author>
<name sortKey="Cohen, Rajal G" sort="Cohen, Rajal G" uniqKey="Cohen R" first="Rajal G." last="Cohen">Rajal G. Cohen</name>
<affiliation wicri:level="2">
<nlm:aff wicri:cut="; and" id="aff1">Department of Neurology, Oregon Health & Science University, Beaverton, Oregon</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oregon</region>
</placeName>
<wicri:cityArea>Department of Neurology, Oregon Health & Science University, Beaverton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sternad, Dagmar" sort="Sternad, Dagmar" uniqKey="Sternad D" first="Dagmar" last="Sternad">Dagmar Sternad</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Departments of Biology, Electrical and Computer Engineering, and Physics, Northeastern University, Boston, Massachusetts</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Departments of Biology, Electrical and Computer Engineering, and Physics, Northeastern University, Boston</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Neurophysiology</title>
<idno type="ISSN">0022-3077</idno>
<idno type="eISSN">1522-1598</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Timing is central to many coordinated actions, and the temporal accuracy of central nervous system commands presents an important limit to skilled performance. Using target-oriented throwing in a virtual environment as an example task, this study presents a novel analysis that quantifies contributions of timing accuracy and shaping of hand trajectories to performance. Task analysis reveals that the result of a throw is fully determined by the projectile position and velocity at release; zero error can be achieved by a manifold of position and velocity combinations (solution manifold). Four predictions were tested.
<italic>1</italic>
) Performers learn to release the projectile closer to the optimal moment for a given arm trajectory, achieving timing accuracy levels similar to those reported in other timing tasks (∼10 ms).
<italic>2</italic>
) Performers develop a hand trajectory that follows the solution manifold such that zero error can be achieved without perfect timing.
<italic>3</italic>
) Skilled performers exploit both routes to improvement more than unskilled performers.
<italic>4</italic>
) Long-term improvement in skilled performance relies on continued optimization of the arm trajectory as timing limits are reached. Average and skilled subjects practiced for 6 and 15 days, respectively. In 6 days, both timing and trajectory alignment improved for all subjects, and skilled subjects showed an advantage in timing. With extended practice, performance continued to improve due to continued shaping of the trajectory, whereas timing accuracy reached an asymptote at 9 ms. We conclude that skilled subjects first maximize timing accuracy and then optimize trajectory shaping to compensate for intrinsic limitations of timing accuracy.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Neurophysiol</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Neurophysiol</journal-id>
<journal-id journal-id-type="hwp">jn</journal-id>
<journal-id journal-id-type="pmc">jn</journal-id>
<journal-id journal-id-type="publisher-id">JN</journal-id>
<journal-title-group>
<journal-title>Journal of Neurophysiology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0022-3077</issn>
<issn pub-type="epub">1522-1598</issn>
<publisher>
<publisher-name>American Physiological Society</publisher-name>
<publisher-loc>Bethesda, MD</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">22031769</article-id>
<article-id pub-id-type="pmc">3349626</article-id>
<article-id pub-id-type="publisher-id">JN-00568-2011</article-id>
<article-id pub-id-type="doi">10.1152/jn.00568.2011</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>State space analysis of timing: exploiting task redundancy to reduce sensitivity to timing</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Cohen</surname>
<given-names>Rajal G.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Sternad</surname>
<given-names>Dagmar</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<aff id="aff1">
<sup>1</sup>
Department of Neurology, Oregon Health & Science University, Beaverton, Oregon; and</aff>
<aff id="aff2">
<sup>2</sup>
Departments of Biology, Electrical and Computer Engineering, and Physics, Northeastern University, Boston, Massachusetts</aff>
</contrib-group>
<author-notes>
<corresp>Address for reprint requests and other correspondence: D. Sternad,
<addr-line>Dept. of Biology, Electrical and Computer Engineering, Northeastern Univ., 134 Mugar Life Science Bldg., 360 Huntington Ave., Boston, MA 02115</addr-line>
(e-mail:
<email>dagmar@neu.edu</email>
).</corresp>
</author-notes>
<pub-date pub-type="ppub">
<day>15</day>
<month>1</month>
<year>2012</year>
</pub-date>
<pub-date pub-type="epub">
<day>26</day>
<month>10</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>15</day>
<month>1</month>
<year>2013</year>
</pub-date>
<pmc-comment> PMC Release delay is 12 months and 0 days and was based on the . </pmc-comment>
<volume>107</volume>
<issue>2</issue>
<fpage>618</fpage>
<lpage>627</lpage>
<history>
<date date-type="received">
<day>20</day>
<month>6</month>
<year>2011</year>
</date>
<date date-type="accepted">
<day>23</day>
<month>10</month>
<year>2011</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2012 the American Physiological Society</copyright-statement>
<copyright-year>2012</copyright-year>
</permissions>
<self-uri xlink:title="pdf" xlink:type="simple" xlink:href="z9k00212000618.pdf"></self-uri>
<abstract>
<p>Timing is central to many coordinated actions, and the temporal accuracy of central nervous system commands presents an important limit to skilled performance. Using target-oriented throwing in a virtual environment as an example task, this study presents a novel analysis that quantifies contributions of timing accuracy and shaping of hand trajectories to performance. Task analysis reveals that the result of a throw is fully determined by the projectile position and velocity at release; zero error can be achieved by a manifold of position and velocity combinations (solution manifold). Four predictions were tested.
<italic>1</italic>
) Performers learn to release the projectile closer to the optimal moment for a given arm trajectory, achieving timing accuracy levels similar to those reported in other timing tasks (∼10 ms).
<italic>2</italic>
) Performers develop a hand trajectory that follows the solution manifold such that zero error can be achieved without perfect timing.
<italic>3</italic>
) Skilled performers exploit both routes to improvement more than unskilled performers.
<italic>4</italic>
) Long-term improvement in skilled performance relies on continued optimization of the arm trajectory as timing limits are reached. Average and skilled subjects practiced for 6 and 15 days, respectively. In 6 days, both timing and trajectory alignment improved for all subjects, and skilled subjects showed an advantage in timing. With extended practice, performance continued to improve due to continued shaping of the trajectory, whereas timing accuracy reached an asymptote at 9 ms. We conclude that skilled subjects first maximize timing accuracy and then optimize trajectory shaping to compensate for intrinsic limitations of timing accuracy.</p>
</abstract>
<kwd-group>
<kwd>skill acquisition</kwd>
<kwd>coordination</kwd>
<kwd>trajectory planning</kwd>
<kwd>throwing</kwd>
<kwd>learning</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source id="CS100">National Institutes of Health</funding-source>
<award-id rid="CS100">R01-HD-045639</award-id>
<award-id rid="CS100">T32-NS-045553</award-id>
<award-id rid="CS100">T32-AT-002688</award-id>
</award-group>
</funding-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001416 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 001416 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:3349626
   |texte=   State space analysis of timing: exploiting task redundancy to reduce sensitivity to timing
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:22031769" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024