Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanics of Flexible Needles Robotically Steered through Soft Tissue

Identifieur interne : 000F46 ( Pmc/Curation ); précédent : 000F45; suivant : 000F47

Mechanics of Flexible Needles Robotically Steered through Soft Tissue

Auteurs : S. Misra [Pays-Bas] ; K. B. Reed [États-Unis] ; B. W. Schafer [États-Unis] ; K. T. Ramesh [États-Unis] ; A. M. Okamura [États-Unis]

Source :

RBID : PMC:3002232

Abstract

The tip asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. This enables robotic needle steering, which can be used in medical procedures to reach subsurface targets inaccessible by straight-line trajectories. However, accurate path planning and control of needle steering requires models of needle-tissue interaction. Previous kinematic models required empirical observations of each needle and tissue combination in order to fit model parameters. This study describes a mechanics-based model of robotic needle steering, which can be used to predict needle behavior and optimize system design based on fundamental mechanical and geometrical properties of the needle and tissue. We first present an analytical model for the loads developed at the tip, based on the geometry of the bevel edge and material properties of soft-tissue simulants (gels). We then present a mechanics-based model that calculates the deflection of a bevel-tipped needle inserted through a soft elastic medium. The model design is guided by microscopic observations of needle-gel interactions. The energy-based formulation incorporates tissue-specific parameters, and the geometry and material properties of the needle. Simulation results follow similar trends (deflection and radius of curvature) to those observed in experimental studies of robotic needle insertion.


Url:
DOI: 10.1177/0278364910369714
PubMed: 21170164
PubMed Central: 3002232

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3002232

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanics of Flexible Needles Robotically Steered through Soft Tissue</title>
<author>
<name sortKey="Misra, S" sort="Misra, S" uniqKey="Misra S" first="S." last="Misra">S. Misra</name>
<affiliation wicri:level="1">
<nlm:aff id="A1"> University of Twente, Enschede, The Netherlands</nlm:aff>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea> University of Twente, Enschede</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Reed, K B" sort="Reed, K B" uniqKey="Reed K" first="K. B." last="Reed">K. B. Reed</name>
<affiliation wicri:level="1">
<nlm:aff id="A2"> University of South Florida, Tampa, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> University of South Florida, Tampa</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schafer, B W" sort="Schafer, B W" uniqKey="Schafer B" first="B. W." last="Schafer">B. W. Schafer</name>
<affiliation wicri:level="1">
<nlm:aff id="A3"> The Johns Hopkins University, Baltimore, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> The Johns Hopkins University, Baltimore</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ramesh, K T" sort="Ramesh, K T" uniqKey="Ramesh K" first="K. T." last="Ramesh">K. T. Ramesh</name>
<affiliation wicri:level="1">
<nlm:aff id="A3"> The Johns Hopkins University, Baltimore, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> The Johns Hopkins University, Baltimore</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Okamura, A M" sort="Okamura, A M" uniqKey="Okamura A" first="A. M." last="Okamura">A. M. Okamura</name>
<affiliation wicri:level="1">
<nlm:aff id="A3"> The Johns Hopkins University, Baltimore, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> The Johns Hopkins University, Baltimore</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">21170164</idno>
<idno type="pmc">3002232</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002232</idno>
<idno type="RBID">PMC:3002232</idno>
<idno type="doi">10.1177/0278364910369714</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">000F46</idno>
<idno type="wicri:Area/Pmc/Curation">000F46</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Mechanics of Flexible Needles Robotically Steered through Soft Tissue</title>
<author>
<name sortKey="Misra, S" sort="Misra, S" uniqKey="Misra S" first="S." last="Misra">S. Misra</name>
<affiliation wicri:level="1">
<nlm:aff id="A1"> University of Twente, Enschede, The Netherlands</nlm:aff>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea> University of Twente, Enschede</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Reed, K B" sort="Reed, K B" uniqKey="Reed K" first="K. B." last="Reed">K. B. Reed</name>
<affiliation wicri:level="1">
<nlm:aff id="A2"> University of South Florida, Tampa, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> University of South Florida, Tampa</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schafer, B W" sort="Schafer, B W" uniqKey="Schafer B" first="B. W." last="Schafer">B. W. Schafer</name>
<affiliation wicri:level="1">
<nlm:aff id="A3"> The Johns Hopkins University, Baltimore, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> The Johns Hopkins University, Baltimore</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ramesh, K T" sort="Ramesh, K T" uniqKey="Ramesh K" first="K. T." last="Ramesh">K. T. Ramesh</name>
<affiliation wicri:level="1">
<nlm:aff id="A3"> The Johns Hopkins University, Baltimore, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> The Johns Hopkins University, Baltimore</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Okamura, A M" sort="Okamura, A M" uniqKey="Okamura A" first="A. M." last="Okamura">A. M. Okamura</name>
<affiliation wicri:level="1">
<nlm:aff id="A3"> The Johns Hopkins University, Baltimore, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> The Johns Hopkins University, Baltimore</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The International journal of robotics research</title>
<idno type="ISSN">0278-3649</idno>
<idno type="eISSN">1741-3176</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">The tip asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. This enables robotic needle steering, which can be used in medical procedures to reach subsurface targets inaccessible by straight-line trajectories. However, accurate path planning and control of needle steering requires models of needle-tissue interaction. Previous kinematic models required empirical observations of each needle and tissue combination in order to fit model parameters. This study describes a mechanics-based model of robotic needle steering, which can be used to predict needle behavior and optimize system design based on fundamental mechanical and geometrical properties of the needle and tissue. We first present an analytical model for the loads developed at the tip, based on the geometry of the bevel edge and material properties of soft-tissue simulants (gels). We then present a mechanics-based model that calculates the deflection of a bevel-tipped needle inserted through a soft elastic medium. The model design is guided by microscopic observations of needle-gel interactions. The energy-based formulation incorporates tissue-specific parameters, and the geometry and material properties of the needle. Simulation results follow similar trends (deflection and radius of curvature) to those observed in experimental studies of robotic needle insertion.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article" xml:lang="EN">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">101511318</journal-id>
<journal-id journal-id-type="pubmed-jr-id">36159</journal-id>
<journal-id journal-id-type="nlm-ta">Int J Rob Res</journal-id>
<journal-title>The International journal of robotics research</journal-title>
<issn pub-type="ppub">0278-3649</issn>
<issn pub-type="epub">1741-3176</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">21170164</article-id>
<article-id pub-id-type="pmc">3002232</article-id>
<article-id pub-id-type="doi">10.1177/0278364910369714</article-id>
<article-id pub-id-type="manuscript">NIHMS195280</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Mechanics of Flexible Needles Robotically Steered through Soft Tissue</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Misra</surname>
<given-names>S.</given-names>
</name>
<xref rid="A1" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Reed</surname>
<given-names>K. B.</given-names>
</name>
<xref rid="A2" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schafer</surname>
<given-names>B. W.</given-names>
</name>
<xref rid="A3" ref-type="aff">§</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ramesh</surname>
<given-names>K. T.</given-names>
</name>
<xref rid="A3" ref-type="aff">§</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Okamura</surname>
<given-names>A. M.</given-names>
</name>
<xref rid="A3" ref-type="aff">§</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label></label>
University of Twente, Enschede, The Netherlands</aff>
<aff id="A2">
<label></label>
University of South Florida, Tampa, USA</aff>
<aff id="A3">
<label>§</label>
The Johns Hopkins University, Baltimore, USA</aff>
<pub-date pub-type="nihms-submitted">
<day>16</day>
<month>4</month>
<year>2010</year>
</pub-date>
<pub-date pub-type="ppub">
<month>11</month>
<year>2010</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>1</day>
<month>10</month>
<year>2011</year>
</pub-date>
<volume>29</volume>
<issue>13</issue>
<fpage>1640</fpage>
<lpage>1660</lpage>
<abstract>
<p id="P1">The tip asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. This enables robotic needle steering, which can be used in medical procedures to reach subsurface targets inaccessible by straight-line trajectories. However, accurate path planning and control of needle steering requires models of needle-tissue interaction. Previous kinematic models required empirical observations of each needle and tissue combination in order to fit model parameters. This study describes a mechanics-based model of robotic needle steering, which can be used to predict needle behavior and optimize system design based on fundamental mechanical and geometrical properties of the needle and tissue. We first present an analytical model for the loads developed at the tip, based on the geometry of the bevel edge and material properties of soft-tissue simulants (gels). We then present a mechanics-based model that calculates the deflection of a bevel-tipped needle inserted through a soft elastic medium. The model design is guided by microscopic observations of needle-gel interactions. The energy-based formulation incorporates tissue-specific parameters, and the geometry and material properties of the needle. Simulation results follow similar trends (deflection and radius of curvature) to those observed in experimental studies of robotic needle insertion.</p>
</abstract>
<contract-num rid="EB1">R01 EB006435-03 ||EB</contract-num>
<contract-num rid="EB1">R01 EB006435-02 ||EB</contract-num>
<contract-num rid="EB1">R01 EB006435-01A1 ||EB</contract-num>
<contract-sponsor id="EB1">National Institute of Biomedical Imaging and Bioengineering : NIBIB</contract-sponsor>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F46 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000F46 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:3002232
   |texte=   Mechanics of Flexible Needles Robotically Steered through Soft Tissue
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:21170164" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024