Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Visual Working Memory and Delay Activity in Highly Selective Neurons in the Inferior Temporal Cortex

Identifieur interne : 000C30 ( Pmc/Curation ); précédent : 000C29; suivant : 000C31

Visual Working Memory and Delay Activity in Highly Selective Neurons in the Inferior Temporal Cortex

Auteurs : Natasha Sigala [Royaume-Uni]

Source :

RBID : PMC:2759363
Url:
DOI: 10.3389/neuro.06.011.2009
PubMed: 19826617
PubMed Central: 2759363

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:2759363

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Visual Working Memory and Delay Activity in Highly Selective Neurons in the Inferior Temporal Cortex</title>
<author>
<name sortKey="Sigala, Natasha" sort="Sigala, Natasha" uniqKey="Sigala N" first="Natasha" last="Sigala">Natasha Sigala</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<institution>Department of Experimental Psychology, University of Oxford</institution>
<country>Oxford, UK</country>
</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea></wicri:regionArea>
<wicri:regionArea># see nlm:aff region in country</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<institution>MRC Cognition and Brain Sciences Unit</institution>
<country>Cambridge, UK</country>
</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea></wicri:regionArea>
<wicri:regionArea># see nlm:aff region in country</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">19826617</idno>
<idno type="pmc">2759363</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759363</idno>
<idno type="RBID">PMC:2759363</idno>
<idno type="doi">10.3389/neuro.06.011.2009</idno>
<date when="2009">2009</date>
<idno type="wicri:Area/Pmc/Corpus">000C30</idno>
<idno type="wicri:Area/Pmc/Curation">000C30</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Visual Working Memory and Delay Activity in Highly Selective Neurons in the Inferior Temporal Cortex</title>
<author>
<name sortKey="Sigala, Natasha" sort="Sigala, Natasha" uniqKey="Sigala N" first="Natasha" last="Sigala">Natasha Sigala</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<institution>Department of Experimental Psychology, University of Oxford</institution>
<country>Oxford, UK</country>
</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea></wicri:regionArea>
<wicri:regionArea># see nlm:aff region in country</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<institution>MRC Cognition and Brain Sciences Unit</institution>
<country>Cambridge, UK</country>
</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea></wicri:regionArea>
<wicri:regionArea># see nlm:aff region in country</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Systems Neuroscience</title>
<idno type="eISSN">1662-5137</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Baylis, G C" uniqKey="Baylis G">G. C. Baylis</name>
</author>
<author>
<name sortKey="Rolls, E T" uniqKey="Rolls E">E. T. Rolls</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bogacz, R" uniqKey="Bogacz R">R. Bogacz</name>
</author>
<author>
<name sortKey="Brown, M W" uniqKey="Brown M">M. W. Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chumbley, J R" uniqKey="Chumbley J">J. R. Chumbley</name>
</author>
<author>
<name sortKey="Dolan, R J" uniqKey="Dolan R">R. J. Dolan</name>
</author>
<author>
<name sortKey="Friston, K J" uniqKey="Friston K">K. J. Friston</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fuster, J M" uniqKey="Fuster J">J. M. Fuster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fuster, J M" uniqKey="Fuster J">J. M. Fuster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fuster, J M" uniqKey="Fuster J">J. M. Fuster</name>
</author>
<author>
<name sortKey="Alexander, G E" uniqKey="Alexander G">G. E. Alexander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gruber, A J" uniqKey="Gruber A">A. J. Gruber</name>
</author>
<author>
<name sortKey="Dayan, P" uniqKey="Dayan P">P. Dayan</name>
</author>
<author>
<name sortKey="Gutkin, B S" uniqKey="Gutkin B">B. S. Gutkin</name>
</author>
<author>
<name sortKey="Solla, S A" uniqKey="Solla S">S. A. Solla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koch, K W" uniqKey="Koch K">K. W. Koch</name>
</author>
<author>
<name sortKey="Fuster, J M" uniqKey="Fuster J">J. M. Fuster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kubota, K" uniqKey="Kubota K">K. Kubota</name>
</author>
<author>
<name sortKey="Niki, H" uniqKey="Niki H">H. Niki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kusunoki, M" uniqKey="Kusunoki M">M. Kusunoki</name>
</author>
<author>
<name sortKey="Sigala, N" uniqKey="Sigala N">N. Sigala</name>
</author>
<author>
<name sortKey="Gaffan, D" uniqKey="Gaffan D">D. Gaffan</name>
</author>
<author>
<name sortKey="Duncan, J" uniqKey="Duncan J">J. Duncan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lebedev, M A" uniqKey="Lebedev M">M. A. Lebedev</name>
</author>
<author>
<name sortKey="Messinger, A" uniqKey="Messinger A">A. Messinger</name>
</author>
<author>
<name sortKey="Kralik, J D" uniqKey="Kralik J">J. D. Kralik</name>
</author>
<author>
<name sortKey="Wise, S P" uniqKey="Wise S">S. P. Wise</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levy, R" uniqKey="Levy R">R. Levy</name>
</author>
<author>
<name sortKey="Goldman Rakic, P S" uniqKey="Goldman Rakic P">P. S. Goldman-Rakic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macoveanu, J" uniqKey="Macoveanu J">J. Macoveanu</name>
</author>
<author>
<name sortKey="Klingberg, T" uniqKey="Klingberg T">T. Klingberg</name>
</author>
<author>
<name sortKey="Tegner, J" uniqKey="Tegner J">J. Tegner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mikami, A" uniqKey="Mikami A">A. Mikami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, E K" uniqKey="Miller E">E. K. Miller</name>
</author>
<author>
<name sortKey="Erickson, C A" uniqKey="Erickson C">C. A. Erickson</name>
</author>
<author>
<name sortKey="Desimone, R" uniqKey="Desimone R">R. Desimone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, E K" uniqKey="Miller E">E. K. Miller</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
<author>
<name sortKey="Desimone, R" uniqKey="Desimone R">R. Desimone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pasternak, T" uniqKey="Pasternak T">T. Pasternak</name>
</author>
<author>
<name sortKey="Greenlee, M W" uniqKey="Greenlee M">M. W. Greenlee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ranganath, C" uniqKey="Ranganath C">C. Ranganath</name>
</author>
<author>
<name sortKey="D Esposito, M" uniqKey="D Esposito M">M. D'Esposito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sohal, V S" uniqKey="Sohal V">V.S. Sohal</name>
</author>
<author>
<name sortKey="Hasselmo, M E" uniqKey="Hasselmo M">M. E. Hasselmo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sugase Miyamoto, Y" uniqKey="Sugase Miyamoto Y">Y. Sugase-Miyamoto</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z. Liu</name>
</author>
<author>
<name sortKey="Wiener, M C" uniqKey="Wiener M">M. C. Wiener</name>
</author>
<author>
<name sortKey="Optican, L M" uniqKey="Optican L">L. M. Optican</name>
</author>
<author>
<name sortKey="Richmond, B J" uniqKey="Richmond B">B. J. Richmond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takeda, M" uniqKey="Takeda M">M. Takeda</name>
</author>
<author>
<name sortKey="Naya, Y" uniqKey="Naya Y">Y. Naya</name>
</author>
<author>
<name sortKey="Fujimichi, R" uniqKey="Fujimichi R">R. Fujimichi</name>
</author>
<author>
<name sortKey="Takeuchi, D" uniqKey="Takeuchi D">D. Takeuchi</name>
</author>
<author>
<name sortKey="Miyashita, Y" uniqKey="Miyashita Y">Y. Miyashita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X J" uniqKey="Wang X">X. J. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Warden, M R" uniqKey="Warden M">M. R. Warden</name>
</author>
<author>
<name sortKey="Miller, E K" uniqKey="Miller E">E. K. Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woloszyn, L" uniqKey="Woloszyn L">L. Woloszyn</name>
</author>
<author>
<name sortKey="Sheinberg, D L" uniqKey="Sheinberg D">D. L. Sheinberg</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="article-commentary">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Syst Neurosci</journal-id>
<journal-id journal-id-type="publisher-id">Front. Syst. Neurosci.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Systems Neuroscience</journal-title>
</journal-title-group>
<issn pub-type="epub">1662-5137</issn>
<publisher>
<publisher-name>Frontiers Research Foundation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">19826617</article-id>
<article-id pub-id-type="pmc">2759363</article-id>
<article-id pub-id-type="doi">10.3389/neuro.06.011.2009</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Neuroscience</subject>
<subj-group>
<subject>General Commentary</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Visual Working Memory and Delay Activity in Highly Selective Neurons in the Inferior Temporal Cortex</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Sigala</surname>
<given-names>Natasha</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="author-notes" rid="fn001">*</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>Department of Experimental Psychology, University of Oxford</institution>
<country>Oxford, UK</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>MRC Cognition and Brain Sciences Unit</institution>
<country>Cambridge, UK</country>
</aff>
<author-notes>
<corresp id="fn001">*Correspondence:
<email>natasha.sigala@mrc-cbu.cam.ac.uk</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>08</day>
<month>9</month>
<year>2009</year>
</pub-date>
<pub-date pub-type="collection">
<year>2009</year>
</pub-date>
<volume>3</volume>
<elocation-id>11</elocation-id>
<history>
<date date-type="received">
<day>15</day>
<month>7</month>
<year>2009</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright: © 2009 Sigala.</copyright-statement>
<copyright-year>2009</copyright-year>
<license license-type="open-access" xlink:href="http://www.frontiersin.org/licenseagreement">
<license-p>This is an open-access publication subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.</license-p>
</license>
</permissions>
<related-article related-article-type="commentary-article" vol="29" page="5494–5507" id="d32e94" xlink:href="19403817" ext-link-type="pubmed" journal-id="J. Neurosci." journal-id-type="nlm-ta">A commentary on
<article-title>Neural dynamics in inferior temporal cortex during a visual working memory task.</article-title>
by Woloszyn, L., and Sheinberg, D. L. (2009). J. Neurosci. 29, 5494–5507.</related-article>
<counts>
<fig-count count="0"></fig-count>
<table-count count="0"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="24"></ref-count>
<page-count count="2"></page-count>
<word-count count="1938"></word-count>
</counts>
</article-meta>
</front>
<body>
<p>Visual working memory (VWM) is the kind of active memory needed to represent and monitor visual information in the short term and is often studied with delayed match-to-sample (DMS) tasks. A number of studies have shown that both the inferior temporal cortex (ITC) and the prefrontal cortex (PFC) are important for performing tasks that involve such cross-temporal contingencies. A neuronal mechanism that has been suggested to support this ability is delay activity, the sustained cell activation during the delay period after the presentation of a stimulus, until a subsequent stimulus or the execution of a response. Particular emphasis has been put on the PFC role in working memory, based on deficits in performance of delay tasks after PFC lesions, persistence of delay activity in some PFC cells even when distractors appear during the delay period, and elevated PET and fMRI BOLD signals from the PFC in humans performing delay tasks (Fuster,
<xref ref-type="bibr" rid="B5">2008</xref>
). Delay activity in the PFC was discovered already in 1971 (Fuster and Alexander,
<xref ref-type="bibr" rid="B6">1971</xref>
; Kubota and Niki,
<xref ref-type="bibr" rid="B9">1971</xref>
) and has been extremely influential in theories of PFC function (e.g. Levy and Goldman-Rakic,
<xref ref-type="bibr" rid="B12">2000</xref>
), but it has since been reported in most cortical areas, e.g. V1 and ITC (Fuster,
<xref ref-type="bibr" rid="B4">1990</xref>
), parietal and somatosensory cortex (Koch and Fuster,
<xref ref-type="bibr" rid="B8">1989</xref>
). According to the current framework neural activity in IT (or other unimodal sensory cortex) represents the stimulus that is no longer visible/available, and this activity is under top-down control exerted by PFC (Ranganath and D'Esposito,
<xref ref-type="bibr" rid="B18">2005</xref>
). Because IT delay activity is thought to be vulnerable to distractors (Baylis and Rolls,
<xref ref-type="bibr" rid="B1">1987</xref>
; Miller et al.,
<xref ref-type="bibr" rid="B16">1993</xref>
), it has been proposed that for the reinstatement of the specific memory in ITC, feedback signals from the PFC are necessary (Miller et al.,
<xref ref-type="bibr" rid="B15">1996</xref>
; Pasternak and Greenlee,
<xref ref-type="bibr" rid="B17">2005</xref>
).</p>
<p>In a recent paper Woloszyn and Sheinberg (
<xref ref-type="bibr" rid="B24">2009</xref>
) report highly relevant findings for the robustness of delay activity in the ITC of monkeys performing a delay task. The task has four different conditions, designed to test the effects of distractors on the delay activity of the neurons during the memory delay. In this DMS task a sample image is presented that needs to be encoded and remembered during a 1000-ms delay, and is then compared with a test image, which can be a match or a non-match to the sample, requiring a different kind of response (right or left button press). The first condition contains no distractor, so the screen is blank until the test stimulus appears. In the second condition the sample is gradually occluded by a square of the same colour as the background. The third condition is a slight variation of the second with the square occluder being black and hence visible during occlusion and throughout the delay period. The fourth and most interesting condition uses a complex visual image, so a true distractor during the delay period, which is replaced by the test stimulus at the end of the delay.</p>
<p>As expected, task performance reflected the higher difficulty of the complex distractor condition with slower reaction times and higher error rates (Woloszyn and Sheinberg,
<xref ref-type="bibr" rid="B24">2009</xref>
, Figure 1F,G). During recordings 79 neurons with very high visual selectivity were isolated, which enabled the authors to test the hypothesis that delay activity is robust in highly selective IT cells (Mikami,
<xref ref-type="bibr" rid="B14">1995</xref>
). In the first three conditions there was selective delay activity (evaluated with ROC analysis) at the level of the cell population, while in the fourth and most relevant condition, although the selectivity was not significant at the level of the population, it was evident in 10 cells (out of 79 or 12.7%), which is comparable to the proportion reported earlier (19/171 or 11.11% cells, Mikami,
<xref ref-type="bibr" rid="B14">1995</xref>
). Furthermore, a linear Support Vector Machine classification analysis showed that combining the selective activity of a small number of cells (64) yields significant classification for effective vs. ineffective stimuli even for the delay activity of the complex distractor trials, with the reliability of the classification improving towards the end of the delay period (see Woloszyn and Sheinberg,
<xref ref-type="bibr" rid="B24">2009</xref>
, Figure 5). It is important to note that the classification analysis provides supportive evidence for the information present at the population level, but the delay activity surviving the distractor presentation is already visible in the spike density functions of the cells (see Woloszyn and Sheinberg,
<xref ref-type="bibr" rid="B24">2009</xref>
, Figure 3A). The finding that delay activity in IT can be robust and survive the presentation of distractors confirms a related finding reported by Takeda et al. (
<xref ref-type="bibr" rid="B21">2005</xref>
). In that study the monkeys performed a paired-associate task and recordings from both IT and PRh cortex showed that cells with target-specific delay activity can maintain their selectivity during the delay period after the presentation of two distractors.</p>
<p>The prevailing view is that robust delay activity in PFC is the main mechanism for information maintenance and processing that is fed back to IT (or other posterior cortical areas). Computational models of working memory primarily focus on PFC and have used extensively the delay activity as part of attractor or feedback networks (e.g. Wang,
<xref ref-type="bibr" rid="B22">2001</xref>
), more recently enriching the models with distractors (Macoveanu et al.,
<xref ref-type="bibr" rid="B13">2007</xref>
), and dopamine modulation of the interaction between PFC and the basal ganglia (Gruber et al.,
<xref ref-type="bibr" rid="B7">2006</xref>
; Chumbley et al.,
<xref ref-type="bibr" rid="B3">2008</xref>
).</p>
<p>The accumulating evidence that IT delay activity can also be robust to the presentation of distractors, as well as that PFC delay activity can become weak and lose its selectivity following distractors (Warden and Miller,
<xref ref-type="bibr" rid="B23">2007</xref>
; Kusunoki et al.,
<xref ref-type="bibr" rid="B10">2009</xref>
), call for a re-evaluation of the emphasis placed on PFC delay activity as the main mechanism supporting VWM. On the one hand, recent evidence suggests that sensory areas also have selective delay activity, so they are involved both in perception and memory (Pasternak and Greenlee,
<xref ref-type="bibr" rid="B17">2005</xref>
). On the other hand, it is not clear if PFC delay activity is a necessary and adequate mechanism for VWM. Several studies have successfully explored alternative interpretations for the role of delay activity in the PFC, pointing to attentional control, stimulus and action selection (see Lebedev et al.,
<xref ref-type="bibr" rid="B11">2004</xref>
and Woloszyn and Sheinberg,
<xref ref-type="bibr" rid="B24">2009</xref>
for relevant studies and discussion). Recent work proposes that VWM can be achieved with alternative mechanisms that do not rely on delay activity (Sugase-Miyamoto et al.,
<xref ref-type="bibr" rid="B20">2008</xref>
). According to this model IT neurons behave like match filters that compare the total activity elicited by the sample and test stimuli, and decision on the match is made when a certain activity threshold is exceeded. The memory trace is stored in the synaptic weights of fast adapting synapses and is independent of the presence of delay activity. The match filter relies on standard stimulus selectivity, and the large difference of activity for effective and ineffective stimuli (see Woloszyn and Sheinberg,
<xref ref-type="bibr" rid="B24">2009</xref>
, Figure 2) creates very different, spatially distributed signals in the synaptic weights. The idea that memory can be stored in synaptic weights has also been modelled in papers addressing the mechanisms of repetition suppression (Sohal and Hasselmo,
<xref ref-type="bibr" rid="B19">2000</xref>
; Bogacz and Brown,
<xref ref-type="bibr" rid="B2">2003</xref>
).The important point about the Sugase-Miyamoto et al. model is that it does not rely on the presence of delay activity, and achieves high matching performance by comparing activity levels during the presentation of the sample and test stimuli only.</p>
<p>These recent findings taken together pose questions to our interpretation of the role of delay activity, which we should aim to answer with well-designed experiments and an open mind.</p>
</body>
<back>
<ack>
<p>Natasha Sigala is supported by the Royal Society (DH051644).</p>
</ack>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baylis</surname>
<given-names>G. C.</given-names>
</name>
<name>
<surname>Rolls</surname>
<given-names>E. T.</given-names>
</name>
</person-group>
(
<year>1987</year>
).
<article-title>Responses of neurons in the inferior temporal cortex in short term and serial recognition memory tasks</article-title>
.
<source>Exp. Brain Res.</source>
<volume>65</volume>
,
<fpage>614</fpage>
<lpage>622</lpage>
<pub-id pub-id-type="doi">10.1007/BF00235984</pub-id>
<pub-id pub-id-type="pmid">3556488</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bogacz</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>M. W.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Comparison of computational models of familiarity discrimination in the perirhinal cortex</article-title>
.
<source>Hippocampus</source>
<volume>13</volume>
,
<fpage>494</fpage>
<lpage>524</lpage>
<pub-id pub-id-type="doi">10.1002/hipo.10093</pub-id>
<pub-id pub-id-type="pmid">12836918</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chumbley</surname>
<given-names>J. R.</given-names>
</name>
<name>
<surname>Dolan</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Friston</surname>
<given-names>K. J.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Attractor models of working memory and their modulation by reward</article-title>
.
<source>Biol. Cybern.</source>
<volume>98</volume>
,
<fpage>11</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.1007/s00422-007-0202-0</pub-id>
<pub-id pub-id-type="pmid">18080131</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fuster</surname>
<given-names>J. M.</given-names>
</name>
</person-group>
(
<year>1990</year>
).
<article-title>Inferotemporal units in selective visual attention and short-term memory</article-title>
.
<source>J. Neurophysiol.</source>
<volume>64</volume>
,
<fpage>681</fpage>
<lpage>697</lpage>
<pub-id pub-id-type="pmid">2230917</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Fuster</surname>
<given-names>J. M.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>The Prefrontal Cortex</article-title>
,
<edition>4th Edn.</edition>
<publisher-loc>New York, NY</publisher-loc>
,
<publisher-name>Academic Press</publisher-name>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fuster</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Alexander</surname>
<given-names>G. E.</given-names>
</name>
</person-group>
(
<year>1971</year>
).
<article-title>Neuron activity related to short-term memory</article-title>
.
<source>Science</source>
<volume>173</volume>
,
<fpage>652</fpage>
<lpage>654</lpage>
<pub-id pub-id-type="doi">10.1126/science.173.3997.652</pub-id>
<pub-id pub-id-type="pmid">4998337</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gruber</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Dayan</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Gutkin</surname>
<given-names>B. S.</given-names>
</name>
<name>
<surname>Solla</surname>
<given-names>S. A.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Dopamine modulation in the basal ganglia locks the gate to working memory</article-title>
.
<source>J. Comput. Neurosci.</source>
<volume>20</volume>
,
<fpage>153</fpage>
<lpage>166</lpage>
<pub-id pub-id-type="doi">10.1007/s10827-005-5705-x</pub-id>
<pub-id pub-id-type="pmid">16699839</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koch</surname>
<given-names>K. W.</given-names>
</name>
<name>
<surname>Fuster</surname>
<given-names>J. M.</given-names>
</name>
</person-group>
(
<year>1989</year>
).
<article-title>Unit activity in monkey parietal cortex related to haptic perception and temporary memory</article-title>
.
<source>Exp. Brain Res.</source>
<volume>76</volume>
,
<fpage>292</fpage>
<lpage>306</lpage>
<pub-id pub-id-type="doi">10.1007/BF00247889</pub-id>
<pub-id pub-id-type="pmid">2767186</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kubota</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Niki</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>1971</year>
).
<article-title>Prefrontal cortical unit activity and delayed alternation performance in monkeys</article-title>
.
<source>J. Neurophsyiol.</source>
<volume>34</volume>
,
<fpage>337</fpage>
<lpage>347</lpage>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kusunoki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sigala</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Gaffan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Duncan</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Detection of fixed and variable targets in the monkey prefrontal cortex</article-title>
.
<source>Cereb. Cortex.</source>
<pub-id pub-id-type="doi">10.1093/cercor/bhp005.</pub-id>
<pub-id pub-id-type="pmid">19193714</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lebedev</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Messinger</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kralik</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Wise</surname>
<given-names>S. P.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Representation of attended versus remembered locations in prefrontal cortex</article-title>
.
<source>PLoS Biol.</source>
<volume>2</volume>
,
<fpage>e365</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pbio.0020365.</pub-id>
<pub-id pub-id-type="pmid">15510225</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levy</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Goldman-Rakic</surname>
<given-names>P. S.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Segregation of working memory functions within the dorsolateral prefrontal cortex</article-title>
.
<source>Exp. Brain Res.</source>
<volume>133</volume>
,
<fpage>23</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="doi">10.1007/s002210000397</pub-id>
<pub-id pub-id-type="pmid">10933207</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Macoveanu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Klingberg</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tegner</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Neuronal firing rates account for distractor effects on mnemonic accuracy in a visuo-spatial working memory task</article-title>
.
<source>Biol. Cybern.</source>
<volume>96</volume>
,
<fpage>407</fpage>
<lpage>419</lpage>
<pub-id pub-id-type="doi">10.1007/s00422-006-0139-8</pub-id>
<pub-id pub-id-type="pmid">17260154</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mikami</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>1995</year>
).
<article-title>Visual neurons with higher selectivity can retain memory in the monkey temporal cortex</article-title>
.
<source>Neurosci. Lett.</source>
<volume>192</volume>
,
<fpage>157</fpage>
<lpage>160</lpage>
<pub-id pub-id-type="doi">10.1016/0304-3940(95)11634-9</pub-id>
<pub-id pub-id-type="pmid">7566639</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>E. K.</given-names>
</name>
<name>
<surname>Erickson</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Desimone</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>1996</year>
).
<article-title>Neural mechanisms of visual working memory in prefrontal cortex in the macaque</article-title>
.
<source>J. Neurosci.</source>
<volume>16</volume>
,
<fpage>5154</fpage>
<lpage>5167</lpage>
<pub-id pub-id-type="pmid">8756444</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>E. K.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Desimone</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>1993</year>
).
<article-title>Activity of neurons in anterior inferior temporal cortex during a short-term memory task</article-title>
.
<source>J. Neurosci.</source>
<volume>13</volume>
,
<fpage>1460</fpage>
<lpage>1478</lpage>
<pub-id pub-id-type="pmid">8463829</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pasternak</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Greenlee</surname>
<given-names>M. W.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Working memory in primate sensory systems</article-title>
.
<source>Nat. Rev. Neurosci.</source>
<volume>6</volume>
,
<fpage>97</fpage>
<lpage>107</lpage>
<pub-id pub-id-type="doi">10.1038/nrn1603</pub-id>
<pub-id pub-id-type="pmid">15654324</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ranganath</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>D'Esposito</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Directing the mind's eye: prefrontal, inferior and medial temporal mechanisms for visual working memory</article-title>
.
<source>Curr. Opin. Neurobiol.</source>
<volume>15</volume>
,
<fpage>175</fpage>
<lpage>182</lpage>
<pub-id pub-id-type="doi">10.1016/j.conb.2005.03.017</pub-id>
<pub-id pub-id-type="pmid">15831399</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sohal</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>Hasselmo</surname>
<given-names>M. E.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>A model for experience-dependent changes in the responses of inferotemporal neurons</article-title>
.
<source>Network</source>
<volume>11</volume>
,
<fpage>169</fpage>
<lpage>190</lpage>
<pub-id pub-id-type="pmid">11014667</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sugase-Miyamoto</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Wiener</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Optican</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Richmond</surname>
<given-names>B. J.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Short-term memory trace in rapidly adapting synapses of inferior temporal cortex</article-title>
.
<source>PLoS Comput. Biol.</source>
<volume>4</volume>
:
<fpage>e1000073</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pcbi.1000073.</pub-id>
<pub-id pub-id-type="pmid">18464917</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takeda</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Naya</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Fujimichi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Takeuchi</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Miyashita</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Active maintenance of associative mnemonic signal in monkey inferior temporal cortex</article-title>
.
<source>Neuron</source>
<volume>48</volume>
,
<fpage>839</fpage>
<lpage>848</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuron.2005.09.028</pub-id>
<pub-id pub-id-type="pmid">16337920</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X. J.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Synaptic reverberation underlying mnemonic persistent activity</article-title>
.
<source>Trends Neurosci.</source>
<volume>24</volume>
,
<fpage>455</fpage>
<lpage>463</lpage>
<pub-id pub-id-type="doi">10.1016/S0166-2236(00)01868-3</pub-id>
<pub-id pub-id-type="pmid">11476885</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Warden</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>E. K.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>The representation of multiple objects in prefrontal neuronal delay activity</article-title>
.
<source>Cereb. Cortex</source>
<volume>17</volume>
(
<issue>Suppl. 1</issue>
),
<fpage>i41</fpage>
<lpage>i50</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/bhm070</pub-id>
<pub-id pub-id-type="pmid">17726003</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Woloszyn</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Sheinberg</surname>
<given-names>D. L.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Neural dynamics in inferior temporal cortex during a visual working memory task</article-title>
.
<source>J. Neurosci.</source>
<volume>29</volume>
,
<fpage>5494</fpage>
<lpage>5507</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.5785-08.2009</pub-id>
<pub-id pub-id-type="pmid">19403817</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C30 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000C30 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:2759363
   |texte=   Visual Working Memory and Delay Activity in Highly Selective Neurons in the Inferior Temporal Cortex
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:19826617" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024