Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

What can crossmodal aftereffects reveal about neural representation and dynamics?

Identifieur interne : 000C27 ( Pmc/Curation ); précédent : 000C26; suivant : 000C28

What can crossmodal aftereffects reveal about neural representation and dynamics?

Auteurs : Talia Konkle ; Christopher I. Moore

Source :

RBID : PMC:3398893

Abstract

The brain continuously adapts to incoming sensory stimuli, which can lead to perceptual illusions in the form of aftereffects. Recently we demonstrated that motion aftereffects transfer between vision and touch.1 Here, the adapted brain state induced by one modality has consequences for processes in another modality, implying that somewhere in the processing stream, visual and tactile motion have shared underlying neural representations. We propose the adaptive processing hypothesis—any area that processes a stimulus adapts to the features of the stimulus it represents, and this adaptation has consequences for perception. This view argues that there is no single locus of an aftereffect. Rather, aftereffects emerge when the test stimulus used to probe the effect of adaptation requires processing of a given type. The illusion will reflect the properties of the brain area(s) that support that specific level of representation. We further suggest that many cortical areas are more process-dependent than modality-dependent, with crossmodal interactions reflecting shared processing demands in even ‘early’ sensory cortices.


Url:
DOI: 10.4161/cib.2.6.9344
PubMed: 22811763
PubMed Central: 3398893

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3398893

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">What can crossmodal aftereffects reveal about neural representation and dynamics?</title>
<author>
<name sortKey="Konkle, Talia" sort="Konkle, Talia" uniqKey="Konkle T" first="Talia" last="Konkle">Talia Konkle</name>
<affiliation>
<nlm:aff id="A1">McGovern Institute for Brain Research; Massachusetts Institute of Technology</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">Department of Brain & Cognitive Sciences; Massachusetts Institute of Technology</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Moore, Christopher I" sort="Moore, Christopher I" uniqKey="Moore C" first="Christopher I." last="Moore">Christopher I. Moore</name>
<affiliation>
<nlm:aff id="A1">McGovern Institute for Brain Research; Massachusetts Institute of Technology</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">Department of Brain & Cognitive Sciences; Massachusetts Institute of Technology</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22811763</idno>
<idno type="pmc">3398893</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398893</idno>
<idno type="RBID">PMC:3398893</idno>
<idno type="doi">10.4161/cib.2.6.9344</idno>
<date when="2009">2009</date>
<idno type="wicri:Area/Pmc/Corpus">000C27</idno>
<idno type="wicri:Area/Pmc/Curation">000C27</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">What can crossmodal aftereffects reveal about neural representation and dynamics?</title>
<author>
<name sortKey="Konkle, Talia" sort="Konkle, Talia" uniqKey="Konkle T" first="Talia" last="Konkle">Talia Konkle</name>
<affiliation>
<nlm:aff id="A1">McGovern Institute for Brain Research; Massachusetts Institute of Technology</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">Department of Brain & Cognitive Sciences; Massachusetts Institute of Technology</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Moore, Christopher I" sort="Moore, Christopher I" uniqKey="Moore C" first="Christopher I." last="Moore">Christopher I. Moore</name>
<affiliation>
<nlm:aff id="A1">McGovern Institute for Brain Research; Massachusetts Institute of Technology</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">Department of Brain & Cognitive Sciences; Massachusetts Institute of Technology</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Communicative & Integrative Biology</title>
<idno type="eISSN">1942-0889</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The brain continuously adapts to incoming sensory stimuli, which can lead to perceptual illusions in the form of aftereffects. Recently we demonstrated that motion aftereffects transfer between vision and touch.
<xref ref-type="bibr" rid="R1">
<sup>1</sup>
</xref>
Here, the adapted brain state induced by one modality has consequences for processes in another modality, implying that somewhere in the processing stream, visual and tactile motion have shared underlying neural representations. We propose the adaptive processing hypothesis—any area that processes a stimulus adapts to the features of the stimulus it represents, and this adaptation has consequences for perception. This view argues that there is no single locus of an aftereffect. Rather, aftereffects emerge when the test stimulus used to probe the effect of adaptation requires processing of a given type. The illusion will reflect the properties of the brain area(s) that support that specific level of representation. We further suggest that many cortical areas are more process-dependent than modality-dependent, with crossmodal interactions reflecting shared processing demands in even ‘early’ sensory cortices.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Konkle, T" uniqKey="Konkle T">T Konkle</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q Wang</name>
</author>
<author>
<name sortKey="Hayward, V" uniqKey="Hayward V">V Hayward</name>
</author>
<author>
<name sortKey="Moore, Ci" uniqKey="Moore C">CI Moore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolgemuth, A" uniqKey="Wolgemuth A">A Wolgemuth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mather, G" uniqKey="Mather G">G Mather</name>
</author>
<author>
<name sortKey="Pavan, A" uniqKey="Pavan A">A Pavan</name>
</author>
<author>
<name sortKey="Campana, G" uniqKey="Campana G">G Campana</name>
</author>
<author>
<name sortKey="Casco, C" uniqKey="Casco C">C Casco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grantham, Dw" uniqKey="Grantham D">DW Grantham</name>
</author>
<author>
<name sortKey="Wightman, Fl" uniqKey="Wightman F">FL Wightman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Watanabe, J" uniqKey="Watanabe J">J Watanabe</name>
</author>
<author>
<name sortKey="Hayashi, S" uniqKey="Hayashi S">S Hayashi</name>
</author>
<author>
<name sortKey="Kajimoto, H" uniqKey="Kajimoto H">H Kajimoto</name>
</author>
<author>
<name sortKey="Tachi, S" uniqKey="Tachi S">S Tachi</name>
</author>
<author>
<name sortKey="Nishida, S" uniqKey="Nishida S">S Nishida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moore, Ci" uniqKey="Moore C">CI Moore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kitagawa, N" uniqKey="Kitagawa N">N Kitagawa</name>
</author>
<author>
<name sortKey="Ichihara, S" uniqKey="Ichihara S">S Ichihara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jain, A" uniqKey="Jain A">A Jain</name>
</author>
<author>
<name sortKey="Sally, Sl" uniqKey="Sally S">SL Sally</name>
</author>
<author>
<name sortKey="Papathomas, Tv" uniqKey="Papathomas T">TV Papathomas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nishida, S" uniqKey="Nishida S">S Nishida</name>
</author>
<author>
<name sortKey="Sato, T" uniqKey="Sato T">T Sato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fang, F" uniqKey="Fang F">F Fang</name>
</author>
<author>
<name sortKey="Ijichi, K" uniqKey="Ijichi K">K Ijichi</name>
</author>
<author>
<name sortKey="He, S" uniqKey="He S">S He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Susilo, T" uniqKey="Susilo T">T Susilo</name>
</author>
<author>
<name sortKey="Mckone, E" uniqKey="Mckone E">E McKone</name>
</author>
<author>
<name sortKey="Edwards, M" uniqKey="Edwards M">M Edwards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hagen, Mc" uniqKey="Hagen M">MC Hagen</name>
</author>
<author>
<name sortKey="Franzen, O" uniqKey="Franzen O">O Franzén</name>
</author>
<author>
<name sortKey="Mcglone, F" uniqKey="Mcglone F">F McGlone</name>
</author>
<author>
<name sortKey="Essick, G" uniqKey="Essick G">G Essick</name>
</author>
<author>
<name sortKey="Dancer, C" uniqKey="Dancer C">C Dancer</name>
</author>
<author>
<name sortKey="Pardo, Jv" uniqKey="Pardo J">JV Pardo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beauchamp, Ms" uniqKey="Beauchamp M">MS Beauchamp</name>
</author>
<author>
<name sortKey="Yasar, Ne" uniqKey="Yasar N">NE Yasar</name>
</author>
<author>
<name sortKey="Kishan, N" uniqKey="Kishan N">N Kishan</name>
</author>
<author>
<name sortKey="Ro, T" uniqKey="Ro T">T Ro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lewis, Jw" uniqKey="Lewis J">JW Lewis</name>
</author>
<author>
<name sortKey="Beauchamp, Ms" uniqKey="Beauchamp M">MS Beauchamp</name>
</author>
<author>
<name sortKey="Deyoe, Ea" uniqKey="Deyoe E">EA DeYoe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poirier, C" uniqKey="Poirier C">C Poirier</name>
</author>
<author>
<name sortKey="Collignon, O" uniqKey="Collignon O">O Collignon</name>
</author>
<author>
<name sortKey="Devolder, Ag" uniqKey="Devolder A">AG Devolder</name>
</author>
<author>
<name sortKey="Renier, L" uniqKey="Renier L">L Renier</name>
</author>
<author>
<name sortKey="Vanlierde, A" uniqKey="Vanlierde A">A Vanlierde</name>
</author>
<author>
<name sortKey="Tranduy, D" uniqKey="Tranduy D">D Tranduy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zangaladze, A" uniqKey="Zangaladze A">A Zangaladze</name>
</author>
<author>
<name sortKey="Epstein, Cm" uniqKey="Epstein C">CM Epstein</name>
</author>
<author>
<name sortKey="Grafton, St" uniqKey="Grafton S">ST Grafton</name>
</author>
<author>
<name sortKey="Sathian, K" uniqKey="Sathian K">K Sathian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sathian, K" uniqKey="Sathian K">K Sathian</name>
</author>
<author>
<name sortKey="Zangaladze, A" uniqKey="Zangaladze A">A Zangaladze</name>
</author>
<author>
<name sortKey="Hoffman, Jm" uniqKey="Hoffman J">JM Hoffman</name>
</author>
<author>
<name sortKey="Grafton, St" uniqKey="Grafton S">ST Grafton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amedi, A" uniqKey="Amedi A">A Amedi</name>
</author>
<author>
<name sortKey="Malach, R" uniqKey="Malach R">R Malach</name>
</author>
<author>
<name sortKey="Hendler, T" uniqKey="Hendler T">T Hendler</name>
</author>
<author>
<name sortKey="Peled, S" uniqKey="Peled S">S Peled</name>
</author>
<author>
<name sortKey="Zohary, E" uniqKey="Zohary E">E Zohary</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kilgour, Ar" uniqKey="Kilgour A">AR Kilgour</name>
</author>
<author>
<name sortKey="Kitada, R" uniqKey="Kitada R">R Kitada</name>
</author>
<author>
<name sortKey="Servos, P" uniqKey="Servos P">P Servos</name>
</author>
<author>
<name sortKey="James, Tw" uniqKey="James T">TW James</name>
</author>
<author>
<name sortKey="Lederman, Sj" uniqKey="Lederman S">SJ Lederman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghazanfar, Aa" uniqKey="Ghazanfar A">AA Ghazanfar</name>
</author>
<author>
<name sortKey="Schroeder, Ce" uniqKey="Schroeder C">CE Schroeder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Driver, J" uniqKey="Driver J">J Driver</name>
</author>
<author>
<name sortKey="Noesselt, T" uniqKey="Noesselt T">T Noesselt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suzuki, S" uniqKey="Suzuki S">S Suzuki</name>
</author>
<author>
<name sortKey="Cavanagh, P" uniqKey="Cavanagh P">P Cavanagh</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="article-commentary">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Commun Integr Biol</journal-id>
<journal-id journal-id-type="iso-abbrev">Commun Integr Biol</journal-id>
<journal-id journal-id-type="publisher-id">CIB</journal-id>
<journal-title-group>
<journal-title>Communicative & Integrative Biology</journal-title>
</journal-title-group>
<issn pub-type="epub">1942-0889</issn>
<publisher>
<publisher-name>Landes Bioscience</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">22811763</article-id>
<article-id pub-id-type="pmc">3398893</article-id>
<article-id pub-id-type="publisher-id">2009CIB0035</article-id>
<article-id pub-id-type="pii">9344</article-id>
<article-id pub-id-type="doi">10.4161/cib.2.6.9344</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article Addendum</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>What can crossmodal aftereffects reveal about neural representation and dynamics?</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Konkle</surname>
<given-names>Talia</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="A2">
<sup>2</sup>
</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Moore</surname>
<given-names>Christopher I.</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="A2">
<sup>2</sup>
</xref>
</contrib>
<aff id="A1">
<label>1</label>
McGovern Institute for Brain Research; Massachusetts Institute of Technology</aff>
<aff id="A2">
<label>2</label>
Department of Brain & Cognitive Sciences; Massachusetts Institute of Technology</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<label>*</label>
Correspondence to: Talia Konkle, Email:
<email xlink:href="cim@mit.edu">cim@mit.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<season>Nov-Dec</season>
<year>2009</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>1</day>
<month>11</month>
<year>2009</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>2</volume>
<issue>6</issue>
<fpage>479</fpage>
<lpage>481</lpage>
<permissions>
<copyright-statement>Copyright © 2009 Landes Bioscience</copyright-statement>
<copyright-year>2009</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc/3.0/">
<license-p>This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>The brain continuously adapts to incoming sensory stimuli, which can lead to perceptual illusions in the form of aftereffects. Recently we demonstrated that motion aftereffects transfer between vision and touch.
<xref ref-type="bibr" rid="R1">
<sup>1</sup>
</xref>
Here, the adapted brain state induced by one modality has consequences for processes in another modality, implying that somewhere in the processing stream, visual and tactile motion have shared underlying neural representations. We propose the adaptive processing hypothesis—any area that processes a stimulus adapts to the features of the stimulus it represents, and this adaptation has consequences for perception. This view argues that there is no single locus of an aftereffect. Rather, aftereffects emerge when the test stimulus used to probe the effect of adaptation requires processing of a given type. The illusion will reflect the properties of the brain area(s) that support that specific level of representation. We further suggest that many cortical areas are more process-dependent than modality-dependent, with crossmodal interactions reflecting shared processing demands in even ‘early’ sensory cortices.</p>
</abstract>
<kwd-group kwd-group-type="author">
<title>Keywords: </title>
<kwd>Adaptation</kwd>
<kwd>brain state</kwd>
<kwd>multisensory</kwd>
<kwd>motion</kwd>
<kwd>visual</kwd>
<kwd>tactile</kwd>
<kwd>aftereffect</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<title>Introduction</title>
<p>Aftereffects are a powerful behavioral paradigm used to infer how information is represented in the brain and how neural populations and circuits change over time – neural dynamics. In the case of motion aftereffect paradigms, for example, an observer stares at visual motion such as a drifting grating (the adapting stimulus) for a period of seconds. When this visual stimulus is suddenly changed to a static visual grating (the test stimulus), the observer sees this stationary stimulus as if it were moving opposite the direction of the original motion for a short period of time.
<xref ref-type="bibr" rid="R2">
<sup>2</sup>
</xref>
<sup>,</sup>
<xref ref-type="bibr" rid="R3">
<sup>3</sup>
</xref>
From this simple behavioral paradigm, we gain critical insights into both underlying neural representation and neural dynamics. First, visual motion perception relies on competing representations in opponent directions. Second, extended processing of a stimulus leads to changes in the brain, which we refer to as the adapted brain state. Where in the brain are circuits changing during adaptation? In other words, what is the site of these neural dynamics?</p>
<p>One intuitive answer is that visual motion aftereffects arise from local dynamics in visual cortex. Motion aftereffects also exist in the auditory
<xref ref-type="bibr" rid="R4">
<sup>4</sup>
</xref>
and tactile domains,
<xref ref-type="bibr" rid="R5">
<sup>5</sup>
</xref>
suggesting that such neural dynamics are a general property of cortico-cortical or thalamo-cortical circuits.
<xref ref-type="bibr" rid="R6">
<sup>6</sup>
</xref>
However, we recently demonstrated that adaptation to tactile motion can lead to visual motion aftereffects, and visa versa.
<xref ref-type="bibr" rid="R1">
<sup>1</sup>
</xref>
Further, visual motion adaptation leads to auditory motion aftereffects.
<xref ref-type="bibr" rid="R7">
<sup>7</sup>
</xref>
<sup>,</sup>
<xref ref-type="bibr" rid="R8">
<sup>8</sup>
</xref>
As such, these crossmodal aftereffects challenge the simple explanation that motion aftereffects arise from unisensory cortex alone. What properties about adaptation and representation are needed to explain how crossmodal aftereffects occur?</p>
</sec>
<sec>
<title>Adaptive Processing Hypothesis</title>
<p>Aftereffects reveal that extended processing of incoming sensory information changes the brain, and there are measurable consequences of this change in subsequent perception. What is the site of these neural dynamics? A naïve view is that dynamics are expressed only in a final integration stage, for example a single ‘higher’ order cortical area, where modulatory flexibility is inherent to its function. In the classic view, the explicit computational goal of this area is ‘bimodal’ integration. Cross-modal aftereffects would emerge, then, as the product of dynamics at this convergent center.</p>
<p>In contrast, we propose that any area or circuit that processes a stimulus is changed by that stimulus and that these dynamics are a functional property of areas throughout the system—the adaptive processing hypothesis. For example, motion-responsive neurons are found in many places short of the “motion processing area” MT, including V1, V2, and V3, and are also found in parietal areas. Thus, motion aftereffects likely originate not from adaptation in one area or circuit but from many stages of processing both in early sensory areas and in higher level areas.
<xref ref-type="bibr" rid="R3">
<sup>3</sup>
</xref>
</p>
<p>A corollary of the adaptive processing hypothesis is that at each level of processing, different aspects of the incoming stimulus are adapting, reflecting the underlying dimensions represented by those neural populations. For example, V1 responses reflect orientation, scale, and motion properties at a specific location, with increasing receptive field size and tuning properties in V2, V3, and MT. This view implies that different aftereffects might be observed across retinotopic locations based on the relative contribution of early and later areas in processing the subsequent test stimulus.</p>
<p>Thus, in adaptation paradigms, the subsequent test stimulus can be thought of as a probe of the adapted state. For example, following 10 sec of visual motion adaptation, presenting a static grating leads to retinotopic aftereffects of short duration with low illusory velocity. Following the same adaptation, presenting a dynamic grating instead leads to aftereffects in more spatial locations, which have faster velocity and longer duration.
<xref ref-type="bibr" rid="R9">
<sup>9</sup>
</xref>
Importantly, the same adapted brain state can give rise to several different perceptual aftereffects. Similarly, following adaptation to a face, observers have stronger aftereffects when tested on upright vs. inverted faces, but also show aftereffects when tested with simple T-shaped stimuli.
<xref ref-type="bibr" rid="R10">
<sup>10</sup>
</xref>
<sup>,</sup>
<xref ref-type="bibr" rid="R11">
<sup>11</sup>
</xref>
The critical insight is that the adapted brain state will have consequences on a subsequently presented test stimulus to the extent that that test stimulus depends on processing in those adapted areas. This framework helps explain the well known fact that aftereffects depend on the relationship between the adapting and test stimuli.
<xref ref-type="bibr" rid="R3">
<sup>3</sup>
</xref>
</p>
<p>In the case of crossmodal aftereffects, these paradigms simply use one modality to probe the adapted state induced by extended processing in another modality. For example, we recently demonstrated that visual and tactile motion adaptation lead to aftereffects in the other modality.
<xref ref-type="bibr" rid="R1">
<sup>1</sup>
</xref>
Based on the framework outlined above, processing tactile motion depends on circuits that were previously adapted by visual motion processing. Similarly, the processing of visual motion depends on circuits adapted by tactile motion. Crossmodal motion aftereffects reveal that visual and tactile motion perception rely on partially shared neural substrates.</p>
</sec>
<sec>
<title>Process-Selective Cortical Circuits</title>
<p>One reason why there might be a site of shared processing between visual and tactile motion comes from an argument for efficient processing. If there is a neural circuit that is specialized to extract motion trajectories from spatio-temporal patterns of spiking input, it might be efficient to route information that requires that processing through that circuit. Indeed, visual motion and tactile motion appear to processed in overlapping (or at least adjacent) areas.
<xref ref-type="bibr" rid="R12">
<sup>12</sup>
</xref>
<sup>,</sup>
<xref ref-type="bibr" rid="R13">
<sup>13</sup>
</xref>
</p>
<p>However, this logic does not extend to auditory motion, which does not activate area MT
<xref ref-type="bibr" rid="R14">
<sup>14</sup>
</xref>
(reviewed in ref.
<xref ref-type="bibr" rid="R15">15</xref>
). One possible account for this discrepancy is that visual motion and tactile motion share a similar input pattern, where a grid of sensors in the retina or skin receives spatial information over time. Interestingly, auditory motion information does not arrive by a grid of spatial sensors but by interaural temporal differences, suggesting these stimuli access other brain areas organized to more efficiently perform a different computation.</p>
<p>Several other examples of utilizing specialized processing circuits across modalities exists. For example, TMS studies have shown that fine spatial orientation judgments utilize V1 for visual as well as tactile stimuli.
<xref ref-type="bibr" rid="R16">
<sup>16</sup>
</xref>
Further, fMRI evidence has shown that fine scale orientation judgments in vision and tactile modalities both activate early visual cortex,
<xref ref-type="bibr" rid="R17">
<sup>17</sup>
</xref>
visual and haptic shape activate lateral occipital areas,
<xref ref-type="bibr" rid="R18">
<sup>18</sup>
</xref>
and even haptic exploration of faces is suggested to activate the visual face-selective FFA.
<xref ref-type="bibr" rid="R19">
<sup>19</sup>
</xref>
If these areas are fundamentally contributing to the perception of orientation, shape, and faces in both modalities, then we would predict crossmodal aftereffects will be found. More generally, these data support process-selective cortical circuits, rather than stimulus-selective cortical circuits. Indeed, emerging evidence that the neocortex is more multisensory than previously believed,
<xref ref-type="bibr" rid="R20">
<sup>20</sup>
</xref>
<sup>,</sup>
<xref ref-type="bibr" rid="R21">
<sup>21</sup>
</xref>
also suggests that defining areas by sensory modality might not accurately describe the underlying representation.</p>
</sec>
<sec sec-type="conclusions">
<title>Conclusions</title>
<p>Aftereffects reveal that any incoming sensory information leads to changes in neural dynamics. Typically when we sense the world, we sample the continuous stream of input with rapid exploratory patterns. Eyes saccade 3 times per second, and maintaining steady fixation eventually causes the world to turn flat gray. Similarly, skin sweeps over surfaces, and without changing stimulation we cease to notice contact, e.g., with clothing. While active sensing rapidly samples different aspects of the physical world, adaptation paradigms force extended processing of a single aspect of the physical world (for adaptation with brief durations see ref.
<xref ref-type="bibr" rid="R22">22</xref>
). In a sense, this extended processing during adaptation may accentuate the neural mechanisms and perceptual consequences that are continually operating on at a more rapid timescale.</p>
<p>Crossmodal aftereffects provide several insights about these adaptive mechanisms. Specifically, we suggest that adaptation is happening at all neural sites that are involved in processing the stimulus, e.g., by renormalizing competing representations to reflect the incoming sensory information. The test stimulus can be thought of as a probe of this adapted state – the extent of shared substrates in processing determines what aftereffects properties will be observed. Areas may be more process-dependent, rather than stimulus-dependent, with crossmodal interactions following automatically in cases with shared processing demands.</p>
</sec>
</body>
<back>
<fn-group>
<fn fn-type="other">
<p>Previously published online:
<ext-link ext-link-type="uri" xlink:href="http://www.landesbioscience.com/journals/cib/article/9344/">www.landesbioscience.com/journals/cib/article/9344</ext-link>
</p>
</fn>
</fn-group>
<notes>
<p>
<related-article xlink:href="10.1016/j.cub.2009.03.035" related-article-type="commentary-article" journal-id="Curr Biol" vol="19" page="1" ext-link-type="doi" id="d36e268">
<person-group person-group-type="author">
<name>
<surname>Konkle</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Hayward</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>CI</given-names>
</name>
</person-group>
<article-title>Motion aftereffects transfer between touch and vision</article-title>
<source>Curr Biol</source>
<year>2009</year>
<volume>19</volume>
<fpage>1</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1016/j.cub.2009.03.035</pub-id>
</related-article>
</p>
</notes>
<ref-list>
<title>References</title>
<ref id="R1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Konkle</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Hayward</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>CI</given-names>
</name>
</person-group>
<article-title>Motion aftereffects transfer between touch and vision</article-title>
<source>Curr Biol</source>
<year>2009</year>
<volume>19</volume>
<fpage>1</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1016/j.cub.2009.03.035</pub-id>
<pub-id pub-id-type="pmid">19135370</pub-id>
</element-citation>
</ref>
<ref id="R2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolgemuth</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>On the aftereffect of seen movement</article-title>
<source>Br J Psychol</source>
<year>1911</year>
<volume>1</volume>
<fpage>1</fpage>
<lpage>117</lpage>
</element-citation>
</ref>
<ref id="R3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mather</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pavan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Campana</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Casco</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>The motion aftereffect reloaded</article-title>
<source>Trends Cogn Sci</source>
<year>2008</year>
<volume>12</volume>
<fpage>481</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1016/j.tics.2008.09.002</pub-id>
<pub-id pub-id-type="pmid">18951829</pub-id>
</element-citation>
</ref>
<ref id="R4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grantham</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Wightman</surname>
<given-names>FL</given-names>
</name>
</person-group>
<article-title>Auditory motion aftereffects</article-title>
<source>Percept Psychophys</source>
<year>1979</year>
<volume>26</volume>
<fpage>403</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.3758/BF03204166</pub-id>
<pub-id pub-id-type="pmid">523284</pub-id>
</element-citation>
</ref>
<ref id="R5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Watanabe</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hayashi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kajimoto</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tachi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nishida</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Tactile motion aftereffects produced by appropriate presentation for mechanoreceptors</article-title>
<source>Exp Brain Res</source>
<year>2007</year>
<volume>180</volume>
<fpage>577</fpage>
<lpage>82</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-007-0979-z</pub-id>
<pub-id pub-id-type="pmid">17549460</pub-id>
</element-citation>
</ref>
<ref id="R6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moore</surname>
<given-names>CI</given-names>
</name>
</person-group>
<article-title>Frequency-dependent processing in the vibrissa sensory system</article-title>
<source>J Neurophysiol</source>
<year>2004</year>
<volume>91</volume>
<fpage>2390</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1152/jn.00925.2003</pub-id>
<pub-id pub-id-type="pmid">15136599</pub-id>
</element-citation>
</ref>
<ref id="R7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kitagawa</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ichihara</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Hearing visual motion in depth</article-title>
<source>Nature</source>
<year>2002</year>
<volume>416</volume>
<fpage>172</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.1038/416172a</pub-id>
<pub-id pub-id-type="pmid">11894093</pub-id>
</element-citation>
</ref>
<ref id="R8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jain</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sally</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Papathomas</surname>
<given-names>TV</given-names>
</name>
</person-group>
<article-title>Audiovisual short-term influences and aftereffects in motion: examination across three sets of directional pairings</article-title>
<source>J Vis</source>
<year>2008</year>
<volume>8</volume>
<fpage>7</fpage>
<lpage>, 1-13</lpage>
<pub-id pub-id-type="doi">10.1167/8.15.7</pub-id>
<pub-id pub-id-type="pmid">19146291</pub-id>
</element-citation>
</ref>
<ref id="R9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nishida</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Motion aftereffect with flickering test patterns reveals higher stages of motion processing</article-title>
<source>Vision Res</source>
<year>1995</year>
<volume>35</volume>
<fpage>477</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="doi">10.1016/0042-6989(94)00144-B</pub-id>
<pub-id pub-id-type="pmid">7900288</pub-id>
</element-citation>
</ref>
<ref id="R10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ijichi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>He</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Transfer of the face viewpoint aftereffect from adaptation to different and inverted faces</article-title>
<source>J Vis</source>
<year>2007</year>
<volume>7</volume>
<fpage>6</fpage>
<lpage>, 1-9</lpage>
<pub-id pub-id-type="doi">10.1167/7.13.6</pub-id>
<pub-id pub-id-type="pmid">17997634</pub-id>
</element-citation>
</ref>
<ref id="R11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Susilo</surname>
<given-names>T</given-names>
</name>
<name>
<surname>McKone</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Solving the upside-down puzzle: inverted face aftereffects derive from shape-generic rather than face-specific mechanisms</article-title>
<source>J Vis</source>
<year>2009</year>
<comment>In press</comment>
</element-citation>
</ref>
<ref id="R12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hagen</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Franzén</surname>
<given-names>O</given-names>
</name>
<name>
<surname>McGlone</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Essick</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Dancer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pardo</surname>
<given-names>JV</given-names>
</name>
</person-group>
<article-title>Tactile motion activates the human middle temporal/V5 (MT/V5) complex</article-title>
<source>Eur J Neurosci</source>
<year>2002</year>
<volume>16</volume>
<fpage>957</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="doi">10.1046/j.1460-9568.2002.02139.x</pub-id>
<pub-id pub-id-type="pmid">12372032</pub-id>
</element-citation>
</ref>
<ref id="R13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beauchamp</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Yasar</surname>
<given-names>NE</given-names>
</name>
<name>
<surname>Kishan</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ro</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Human MST but not MT responds to tactile stimulation</article-title>
<source>J Neurosci</source>
<year>2007</year>
<volume>27</volume>
<fpage>8261</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.0754-07.2007</pub-id>
<pub-id pub-id-type="pmid">17670972</pub-id>
</element-citation>
</ref>
<ref id="R14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lewis</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Beauchamp</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>DeYoe</surname>
<given-names>EA</given-names>
</name>
</person-group>
<article-title>A comparison of visual and auditory motion processing in human cerebral cortex</article-title>
<source>Cereb Cortex</source>
<year>2000</year>
<volume>10</volume>
<fpage>873</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/10.9.873</pub-id>
<pub-id pub-id-type="pmid">10982748</pub-id>
</element-citation>
</ref>
<ref id="R15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poirier</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Collignon</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Devolder</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Renier</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Vanlierde</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tranduy</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Specific activation of the V5 brain area by auditory motion processing: an fMRI study</article-title>
<source>Brain Res Cogn Brain Res</source>
<year>2005</year>
<volume>25</volume>
<fpage>650</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1016/j.cogbrainres.2005.08.015</pub-id>
<pub-id pub-id-type="pmid">16298112</pub-id>
</element-citation>
</ref>
<ref id="R16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zangaladze</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Epstein</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Grafton</surname>
<given-names>ST</given-names>
</name>
<name>
<surname>Sathian</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Involvement of visual cortex in tactile discrimination of orientation</article-title>
<source>Nature</source>
<year>1999</year>
<volume>401</volume>
<fpage>587</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="doi">10.1038/44139</pub-id>
<pub-id pub-id-type="pmid">10524625</pub-id>
</element-citation>
</ref>
<ref id="R17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sathian</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Zangaladze</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hoffman</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Grafton</surname>
<given-names>ST</given-names>
</name>
</person-group>
<article-title>Feeling with the mind’s eye</article-title>
<source>Neuroreport</source>
<year>1997</year>
<volume>8</volume>
<fpage>3877</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="doi">10.1097/00001756-199712220-00008</pub-id>
<pub-id pub-id-type="pmid">9462459</pub-id>
</element-citation>
</ref>
<ref id="R18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amedi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Malach</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hendler</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Peled</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zohary</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Visuo-haptic object-related activation in the ventral visual pathway</article-title>
<source>Nat Neurosci</source>
<year>2001</year>
<volume>4</volume>
<fpage>324</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="doi">10.1038/85201</pub-id>
<pub-id pub-id-type="pmid">11224551</pub-id>
</element-citation>
</ref>
<ref id="R19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kilgour</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Kitada</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Servos</surname>
<given-names>P</given-names>
</name>
<name>
<surname>James</surname>
<given-names>TW</given-names>
</name>
<name>
<surname>Lederman</surname>
<given-names>SJ</given-names>
</name>
</person-group>
<article-title>Haptic face identification activates ventral occipital and temporal areas: an fMRI study</article-title>
<source>Brain Cogn</source>
<year>2005</year>
<volume>59</volume>
<fpage>246</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="doi">10.1016/j.bandc.2005.07.004</pub-id>
<pub-id pub-id-type="pmid">16157435</pub-id>
</element-citation>
</ref>
<ref id="R20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ghazanfar</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Schroeder</surname>
<given-names>CE</given-names>
</name>
</person-group>
<article-title>Is neocortex essentially multisensory?</article-title>
<source>Trends Cogn Sci</source>
<year>2006</year>
<volume>10</volume>
<fpage>278</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="doi">10.1016/j.tics.2006.04.008</pub-id>
<pub-id pub-id-type="pmid">16713325</pub-id>
</element-citation>
</ref>
<ref id="R21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Driver</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Noesselt</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments</article-title>
<source>Neuron</source>
<year>2008</year>
<volume>57</volume>
<fpage>11</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuron.2007.12.013</pub-id>
<pub-id pub-id-type="pmid">18184561</pub-id>
</element-citation>
</ref>
<ref id="R22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suzuki</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Cavanagh</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>A shape-contrast effect for briefly presented stimuli</article-title>
<source>J Exp Psychol Hum Percept Perform</source>
<year>1998</year>
<volume>24</volume>
<fpage>1315</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="doi">10.1037/0096-1523.24.5.1315</pub-id>
<pub-id pub-id-type="pmid">9778826</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C27 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000C27 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:3398893
   |texte=   What can crossmodal aftereffects reveal about neural representation and
dynamics?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:22811763" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024